Ab Initio Quantum Monte Carlo Simulation of the Warm Dense Electron Gas in the Thermodynamic Limit
Here we perform ab initio quantum Monte Carlo (QMC) simulations of the warm dense uniform electron gas in the thermodynamic limit. By combining QMC data with the linear response theory, we are able to remove finitesize errors from the potential energy over the substantial parts of the warm dense regime, overcoming the deficiencies of the existing finitesize corrections by Brown et al. [Phys. Rev. Lett. 110, 146405 (2013)]. Extensive new QMC results for up to N = 1000 electrons enable us to compute the potential energy V and the exchangecorrelation free energy F _{xc} of the macroscopic electron gas with an unprecedented accuracy of  Δ V  /  V  ,  Δ F _{xc}  /  F  _{xc} ~ 10 ^{$$3}. Finally, a comparison of our new data to the recent parametrization of F _{xc} by Karasiev et al. [Phys. Rev. Lett. 112, 076403 (2014)] reveals significant deviations to the latter.
 Authors:

^{[1]};
^{[2]};
^{[3]};
^{[4]};
^{[4]};
^{[2]}
 Univ. of Kiel (Germany). Inst. of Theoretical Physics and Astrophysics
 Univ. of Kiel (Germany). Inst. of Theoretical Physics and Astrophysics
 Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
 Imperial College, London (United Kingdom). Dept. of Physics
 Publication Date:
 Report Number(s):
 LAUR1624812
Journal ID: ISSN 00319007; PRLTAO; TRN: US1701559
 Grant/Contract Number:
 AC5206NA25396; shp00015; EP/K038141/1; TYC101
 Type:
 Accepted Manuscript
 Journal Name:
 Physical Review Letters
 Additional Journal Information:
 Journal Volume: 117; Journal Issue: 15; Journal ID: ISSN 00319007
 Publisher:
 American Physical Society (APS)
 Research Org:
 Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
 Sponsoring Org:
 USDOE National Nuclear Security Administration (NNSA)
 Country of Publication:
 United States
 Language:
 English
 Subject:
 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
 OSTI Identifier:
 1345155
 Alternate Identifier(s):
 OSTI ID: 1328230
Dornheim, Tobias, Groth, Simon, Sjostrom, Travis, Malone, Fionn D., Foulkes, W. M. C., and Bonitz, Michael. Ab Initio Quantum Monte Carlo Simulation of the Warm Dense Electron Gas in the Thermodynamic Limit. United States: N. p.,
Web. doi:10.1103/PhysRevLett.117.156403.
Dornheim, Tobias, Groth, Simon, Sjostrom, Travis, Malone, Fionn D., Foulkes, W. M. C., & Bonitz, Michael. Ab Initio Quantum Monte Carlo Simulation of the Warm Dense Electron Gas in the Thermodynamic Limit. United States. doi:10.1103/PhysRevLett.117.156403.
Dornheim, Tobias, Groth, Simon, Sjostrom, Travis, Malone, Fionn D., Foulkes, W. M. C., and Bonitz, Michael. 2016.
"Ab Initio Quantum Monte Carlo Simulation of the Warm Dense Electron Gas in the Thermodynamic Limit". United States.
doi:10.1103/PhysRevLett.117.156403. https://www.osti.gov/servlets/purl/1345155.
@article{osti_1345155,
title = {Ab Initio Quantum Monte Carlo Simulation of the Warm Dense Electron Gas in the Thermodynamic Limit},
author = {Dornheim, Tobias and Groth, Simon and Sjostrom, Travis and Malone, Fionn D. and Foulkes, W. M. C. and Bonitz, Michael},
abstractNote = {Here we perform ab initio quantum Monte Carlo (QMC) simulations of the warm dense uniform electron gas in the thermodynamic limit. By combining QMC data with the linear response theory, we are able to remove finitesize errors from the potential energy over the substantial parts of the warm dense regime, overcoming the deficiencies of the existing finitesize corrections by Brown et al. [Phys. Rev. Lett. 110, 146405 (2013)]. Extensive new QMC results for up to N = 1000 electrons enable us to compute the potential energy V and the exchangecorrelation free energy F xc of the macroscopic electron gas with an unprecedented accuracy of  Δ V  /  V  ,  Δ Fxc  /  F  xc ~ 10 $$3. Finally, a comparison of our new data to the recent parametrization of F xc by Karasiev et al. [Phys. Rev. Lett. 112, 076403 (2014)] reveals significant deviations to the latter.},
doi = {10.1103/PhysRevLett.117.156403},
journal = {Physical Review Letters},
number = 15,
volume = 117,
place = {United States},
year = {2016},
month = {10}
}