DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Growth rate of crystalline ice and the diffusivity of supercooled water from 126 to 262 K

Abstract

Understanding deeply supercooled water is key to unraveling many of water’s anomalous properties. However, this has proven difficult due to rapid and uncontrolled crystallization. Using a pulsed laser heating technique, we measure the growth rate of crystalline ice, G(T), for 180 K < T < 262 K, i.e. deep within water’s “no man’s land.” The self-diffusion of supercooled liquid water, D(T), is obtained from G(T) using the Wilson-Frenkel model of crystal growth. For T > 237 K, G(T) and D(T) have super-Arrhenius (“fragile”) temperature dependences, but both crossover to Arrhenius (“strong”) behavior with a large activation energy in “no man’s land.” The fact that G(T) and D(T) are smoothly varying rules out the hypothesis that liquid water’s properties have a singularity at or near 228 K. Furthermore the results are consistent with a previous prediction for D(T) that assumed no thermodynamic transitions occur in “no man’s land.

Authors:
 [1]; ORCiD logo [1];  [1];  [1]; ORCiD logo [1]
  1. Chemical Physics &, Analysis, Physical Sciences Division, Physical &, Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99352
Publication Date:
Research Org.:
Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1335529
Alternate Identifier(s):
OSTI ID: 1344658
Report Number(s):
PNNL-SA-119195
Journal ID: ISSN 0027-8424
Grant/Contract Number:  
KC0301050-16248; AC05-76RL01830
Resource Type:
Published Article
Journal Name:
Proceedings of the National Academy of Sciences of the United States of America
Additional Journal Information:
Journal Name: Proceedings of the National Academy of Sciences of the United States of America Journal Volume: 113 Journal Issue: 52; Journal ID: ISSN 0027-8424
Publisher:
Proceedings of the National Academy of Sciences
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; supercooled water; self-diffusion; crystallization kinetics; dynamic crossover

Citation Formats

Xu, Yuntao, Petrik, Nikolay G., Smith, R. Scott, Kay, Bruce D., and Kimmel, Greg A. Growth rate of crystalline ice and the diffusivity of supercooled water from 126 to 262 K. United States: N. p., 2016. Web. doi:10.1073/pnas.1611395114.
Xu, Yuntao, Petrik, Nikolay G., Smith, R. Scott, Kay, Bruce D., & Kimmel, Greg A. Growth rate of crystalline ice and the diffusivity of supercooled water from 126 to 262 K. United States. https://doi.org/10.1073/pnas.1611395114
Xu, Yuntao, Petrik, Nikolay G., Smith, R. Scott, Kay, Bruce D., and Kimmel, Greg A. Mon . "Growth rate of crystalline ice and the diffusivity of supercooled water from 126 to 262 K". United States. https://doi.org/10.1073/pnas.1611395114.
@article{osti_1335529,
title = {Growth rate of crystalline ice and the diffusivity of supercooled water from 126 to 262 K},
author = {Xu, Yuntao and Petrik, Nikolay G. and Smith, R. Scott and Kay, Bruce D. and Kimmel, Greg A.},
abstractNote = {Understanding deeply supercooled water is key to unraveling many of water’s anomalous properties. However, this has proven difficult due to rapid and uncontrolled crystallization. Using a pulsed laser heating technique, we measure the growth rate of crystalline ice, G(T), for 180 K < T < 262 K, i.e. deep within water’s “no man’s land.” The self-diffusion of supercooled liquid water, D(T), is obtained from G(T) using the Wilson-Frenkel model of crystal growth. For T > 237 K, G(T) and D(T) have super-Arrhenius (“fragile”) temperature dependences, but both crossover to Arrhenius (“strong”) behavior with a large activation energy in “no man’s land.” The fact that G(T) and D(T) are smoothly varying rules out the hypothesis that liquid water’s properties have a singularity at or near 228 K. Furthermore the results are consistent with a previous prediction for D(T) that assumed no thermodynamic transitions occur in “no man’s land.},
doi = {10.1073/pnas.1611395114},
journal = {Proceedings of the National Academy of Sciences of the United States of America},
number = 52,
volume = 113,
place = {United States},
year = {Mon Dec 12 00:00:00 EST 2016},
month = {Mon Dec 12 00:00:00 EST 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1073/pnas.1611395114

Citation Metrics:
Cited by: 112 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Crystallization of Amorphous Water Ice in the Solar System
journal, December 1996

  • Jenniskens, P.; Blake, D. F.
  • The Astrophysical Journal, Vol. 473, Issue 2
  • DOI: 10.1086/178220

Self‐Diffusion in Liquid Water to −31°C
journal, December 1972

  • Gillen, Kenneth T.; Douglass, D. C.; Hoch, M. J. R.
  • The Journal of Chemical Physics, Vol. 57, Issue 12
  • DOI: 10.1063/1.1678198

Dynamics anomaly in high-density amorphous ice between 0.7 and 1.1 GPa
journal, February 2016


Spectroscopic Signature of Stacking Disorder in Ice I
journal, July 2014

  • Carr, Thomas H. G.; Shephard, Jacob J.; Salzmann, Christoph G.
  • The Journal of Physical Chemistry Letters, Vol. 5, Issue 14
  • DOI: 10.1021/jz500996p

Metastable liquid–liquid transition in a molecular model of water
journal, June 2014

  • Palmer, Jeremy C.; Martelli, Fausto; Liu, Yang
  • Nature, Vol. 510, Issue 7505
  • DOI: 10.1038/nature13405

Relation between the Widom line and the dynamic crossover in systems with a liquid-liquid phase transition
journal, November 2005

  • Xu, L.; Kumar, P.; Buldyrev, S. V.
  • Proceedings of the National Academy of Sciences, Vol. 102, Issue 46
  • DOI: 10.1073/pnas.0507870102

Review of the vapour pressures of ice and supercooled water for atmospheric applications
journal, April 2005

  • Murphy, D. M.; Koop, T.
  • Quarterly Journal of the Royal Meteorological Society, Vol. 131, Issue 608
  • DOI: 10.1256/qj.04.94

Phase behaviour of metastable water
journal, November 1992

  • Poole, Peter H.; Sciortino, Francesco; Essmann, Ulrich
  • Nature, Vol. 360, Issue 6402
  • DOI: 10.1038/360324a0

The deposition angle-dependent density of amorphous solid water films
journal, January 2003

  • Dohnálek, Z.; Kimmel, Greg A.; Ayotte, Patrick
  • The Journal of Chemical Physics, Vol. 118, Issue 1
  • DOI: 10.1063/1.1525805

Liquid water in the domain of cubic crystalline ice Ic
journal, July 1997

  • Jenniskens, P.; Banham, S. F.; Blake, D. F.
  • The Journal of Chemical Physics, Vol. 107, Issue 4
  • DOI: 10.1063/1.474468

Neutron Scattering Analysis of Water’s Glass Transition and Micropore Collapse in Amorphous Solid Water
journal, May 2016

  • Hill, Catherine R.; Mitterdorfer, Christian; Youngs, Tristan G. A.
  • Physical Review Letters, Vol. 116, Issue 21
  • DOI: 10.1103/PhysRevLett.116.215501

Perspective: Supercooled liquids and glasses
journal, August 2012

  • Ediger, M. D.; Harrowell, Peter
  • The Journal of Chemical Physics, Vol. 137, Issue 8
  • DOI: 10.1063/1.4747326

Prediction of entropy and dynamic properties of water below the homogeneous nucleation temperature
journal, May 2003

  • Starr, Francis W.; Angell, C. Austen; Stanley, H. Eugene
  • Physica A: Statistical Mechanics and its Applications, Vol. 323
  • DOI: 10.1016/S0378-4371(03)00012-8

Kinetics of crystallizing D 2 O water near 150 K by Fourier transform infrared spectroscopy and a comparison with the corresponding calorimetric studies on H 2 O water
journal, July 1995

  • Hage, Wolfgang; Hallbrucker, Andreas; Mayer, Erwin
  • The Journal of Chemical Physics, Vol. 103, Issue 2
  • DOI: 10.1063/1.470140

Isothermal compressibility of supercooled water and evidence for a thermodynamic singularity at −45°C
journal, August 1976

  • Speedy, R. J.; Angell, C. A.
  • The Journal of Chemical Physics, Vol. 65, Issue 3
  • DOI: 10.1063/1.433153

The violation of the Stokes-Einstein relation in supercooled water
journal, August 2006

  • Chen, S. -H.; Mallamace, F.; Mou, C. -Y.
  • Proceedings of the National Academy of Sciences, Vol. 103, Issue 35
  • DOI: 10.1073/pnas.0603253103

A new methodology and model for characterization of nucleation and growth kinetics in solids
journal, December 2003

  • Safarik, D. J.; Mullins, C. B.
  • The Journal of Chemical Physics, Vol. 119, Issue 23
  • DOI: 10.1063/1.1616551

Kinetic aspects of the thermostatted growth of ice from supercooled water in simulations
journal, July 2011

  • Weiss, Volker C.; Rullich, Markus; Köhler, Christof
  • The Journal of Chemical Physics, Vol. 135, Issue 3
  • DOI: 10.1063/1.3609768

Free energy contributions and structural characterization of stacking disordered ices
journal, January 2016

  • Hudait, Arpa; Qiu, Siwei; Lupi, Laura
  • Physical Chemistry Chemical Physics, Vol. 18, Issue 14
  • DOI: 10.1039/C6CP00915H

Crystallization Rates of a Lennard-Jones Liquid
journal, November 1982


Self-Diffusion of Supercooled Water to 238 K Using PGSE NMR Diffusion Measurements
journal, January 1999

  • Price, William S.; Ide, Hiroyuki; Arata, Yoji
  • The Journal of Physical Chemistry A, Vol. 103, Issue 4
  • DOI: 10.1021/jp9839044

Thermodynamic and structural aspects of the potential energy surface of simulated water
journal, March 2001


Diffusionless Crystal Growth from Glass Has Precursor in Equilibrium Liquid
journal, January 2008

  • Sun, Ye; Xi, Hanmi; Ediger, M. D.
  • The Journal of Physical Chemistry B, Vol. 112, Issue 3
  • DOI: 10.1021/jp709616c

Temperature dependence of crystal growth of hexagonal ice (Ih)
journal, January 2011

  • Rozmanov, Dmitri; Kusalik, Peter G.
  • Physical Chemistry Chemical Physics, Vol. 13, Issue 34
  • DOI: 10.1039/c1cp21210a

The structural origin of anomalous properties of liquid water
journal, December 2015

  • Nilsson, Anders; Pettersson, Lars G. M.
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms9998

Transport in Amorphous Solid Water Films:  Implications for Self-Diffusivity
journal, September 2006

  • McClure, Sean M.; Barlow, Evan T.; Akin, Minta C.
  • The Journal of Physical Chemistry B, Vol. 110, Issue 36
  • DOI: 10.1021/jp063259y

In-layer stacking competition during ice growth
journal, January 2014

  • Choi, Saehyun; Jang, Eunseon; Kim, Jun Soo
  • The Journal of Chemical Physics, Vol. 140, Issue 1
  • DOI: 10.1063/1.4852180

Anisotropic growth kinetics of ice crystals from water studied by molecular dynamics simulation
journal, December 1996


Crystalline Ice Growth on Pt(111): Observation of a Hydrophobic Water Monolayer
journal, October 2005


Stability-limit conjecture. An interpretation of the properties of water
journal, March 1982

  • Speedy, Robin J.
  • The Journal of Physical Chemistry, Vol. 86, Issue 6
  • DOI: 10.1021/j100395a030

On the Temperature Dependence of Cooperative Relaxation Properties in Glass‐Forming Liquids
journal, July 1965

  • Adam, Gerold; Gibbs, Julian H.
  • The Journal of Chemical Physics, Vol. 43, Issue 1
  • DOI: 10.1063/1.1696442

The molecular mechanism of solidification
journal, December 1964


Kinetics of Phase Change. I General Theory
journal, December 1939

  • Avrami, Melvin
  • The Journal of Chemical Physics, Vol. 7, Issue 12, p. 1103-1112
  • DOI: 10.1063/1.1750380

Supercooled and glassy water
journal, October 2003


Thickness dependent crystallization kinetics of sub-micron amorphous solid water films
journal, March 2003

  • Safarik, D. J.; Meyer, R. J.; Mullins, C. B.
  • The Journal of Chemical Physics, Vol. 118, Issue 10
  • DOI: 10.1063/1.1543980

The putative liquid-liquid transition is a liquid-solid transition in atomistic models of water
journal, October 2011

  • Limmer, David T.; Chandler, David
  • The Journal of Chemical Physics, Vol. 135, Issue 13
  • DOI: 10.1063/1.3643333

Crossover from diffusion-limited to kinetics-limited growth of ice crystals
journal, November 2005


Self-Diffusion of Supercooled o -Terphenyl near the Glass Transition Temperature
journal, January 2006

  • Mapes, Marie K.; Swallen, Stephen F.; Ediger, M. D.
  • The Journal of Physical Chemistry B, Vol. 110, Issue 1
  • DOI: 10.1021/jp0555955

Water's second glass transition
journal, October 2013

  • Amann-Winkel, K.; Gainaru, C.; Handle, P. H.
  • Proceedings of the National Academy of Sciences, Vol. 110, Issue 44
  • DOI: 10.1073/pnas.1311718110

Corresponding states for mesostructure and dynamics of supercooled water
journal, January 2013


Anomalies in bulk supercooled water at negative pressure
journal, May 2014

  • Pallares, G.; El Mekki Azouzi, M.; Gonzalez, M. A.
  • Proceedings of the National Academy of Sciences, Vol. 111, Issue 22
  • DOI: 10.1073/pnas.1323366111

Palmer et al. reply
journal, March 2016

  • Palmer, Jeremy C.; Martelli, Fausto; Liu, Yang
  • Nature, Vol. 531, Issue 7593
  • DOI: 10.1038/nature16540

The physics of premelted ice and its geophysical consequences
journal, July 2006


The melting point of ice Ih for common water models calculated from direct coexistence of the solid-liquid interface
journal, April 2006

  • García Fernández, Ramón; Abascal, José L. F.; Vega, Carlos
  • The Journal of Chemical Physics, Vol. 124, Issue 14
  • DOI: 10.1063/1.2183308

NMR evidence of a sharp change in a measure of local order in deeply supercooled confined water
journal, August 2008

  • Mallamace, F.; Corsaro, C.; Broccio, M.
  • Proceedings of the National Academy of Sciences, Vol. 105, Issue 35
  • DOI: 10.1073/pnas.0805032105

Insights into Phases of Liquid Water from Study of Its Unusual Glass-Forming Properties
journal, February 2008


Critical Radius of Supercooled Water Droplets: On the Transition toward Dendritic Freezing
journal, January 2016

  • Buttersack, Tillmann; Bauerecker, Sigurd
  • The Journal of Physical Chemistry B, Vol. 120, Issue 3
  • DOI: 10.1021/acs.jpcb.5b09913

Layer-by-layer growth of thin amorphous solid water films on Pt(111) and Pd(111)
journal, July 2006

  • Kimmel, Greg A.; Petrik, Nikolay G.; Dohnálek, Zdenek
  • The Journal of Chemical Physics, Vol. 125, Issue 4
  • DOI: 10.1063/1.2218844

Metastability and no criticality
journal, March 2016


Crystallization kinetics of water below 150 K
journal, February 1994

  • Hage, Wolfgang; Hallbrucker, Andreas; Mayer, Erwin
  • The Journal of Chemical Physics, Vol. 100, Issue 4
  • DOI: 10.1063/1.466468

Effect of Hydrogen Bonds on the Thermodynamic Behavior of Liquid Water
journal, September 1994


Controlling the Morphology of Amorphous Solid Water
journal, March 1999


Relation between the Widom line and the breakdown of the Stokes-Einstein relation in supercooled water
journal, May 2007

  • Kumar, P.; Buldyrev, S. V.; Becker, S. R.
  • Proceedings of the National Academy of Sciences, Vol. 104, Issue 23
  • DOI: 10.1073/pnas.0702608104

The effect of the underlying substrate on the crystallization kinetics of dense amorphous solid water films
journal, April 2000

  • Dohnálek, Z.; Kimmel, Greg A.; Ciolli, Ryan L.
  • The Journal of Chemical Physics, Vol. 112, Issue 13
  • DOI: 10.1063/1.481166

Molecular Reorientation Dynamics Govern the Glass Transitions of the Amorphous Ices
journal, May 2016


The relationship between liquid, supercooled and glassy water
journal, November 1998

  • Mishima, Osamu; Stanley, H. Eugene
  • Nature, Vol. 396, Issue 6709
  • DOI: 10.1038/24540

Interface-Limited Growth of Heterogeneously Nucleated Ice in Supercooled Water
journal, January 2014

  • Nistor, Razvan A.; Markland, Thomas E.; Berne, B. J.
  • The Journal of Physical Chemistry B, Vol. 118, Issue 3
  • DOI: 10.1021/jp408832b

Flow, diffusion and crystallization of supercooled liquids: Revisited
journal, January 2000

  • Ngai, K. L.; Magill, J. H.; Plazek, D. J.
  • The Journal of Chemical Physics, Vol. 112, Issue 4
  • DOI: 10.1063/1.480752

Nucleation-Limited Dewetting of Ice Films on Pt(111)
journal, May 2008


Kinetics of Phase Change. II Transformation‐Time Relations for Random Distribution of Nuclei
journal, February 1940

  • Avrami, Melvin
  • The Journal of Chemical Physics, Vol. 8, Issue 2
  • DOI: 10.1063/1.1750631

Interpretation of Experimentally Determined Growth Rates of Ice Crystals in Supercooled Water
journal, September 1967

  • Pruppacher, H. R.
  • The Journal of Chemical Physics, Vol. 47, Issue 5
  • DOI: 10.1063/1.1712169

Anisotropy in the crystal growth of hexagonal ice, I h
journal, September 2012

  • Rozmanov, Dmitri; Kusalik, Peter G.
  • The Journal of Chemical Physics, Vol. 137, Issue 9
  • DOI: 10.1063/1.4748377

Growth of multilayer ice films and the formation of cubic ice imaged with STM
journal, May 2008


Singularity-free interpretation of the thermodynamics of supercooled water
journal, June 1996

  • Sastry, Srikanth; Debenedetti, Pablo G.; Sciortino, Francesco
  • Physical Review E, Vol. 53, Issue 6
  • DOI: 10.1103/PhysRevE.53.6144

Crystalline ice growth on Pt(111) and Pd(111): Nonwetting growth on a hydrophobic water monolayer
journal, March 2007

  • Kimmel, Greg A.; Petrik, Nikolay G.; Dohnálek, Zdenek
  • The Journal of Chemical Physics, Vol. 126, Issue 11
  • DOI: 10.1063/1.2672869

Thermodynamic Analysis of the Two-Liquid Model for Anomalies of Water, HDL–LDL Fluctuations, and Liquid–Liquid Transition
journal, October 2015


Thermal Conductivity Minimum: A New Water Anomaly
journal, December 2011

  • Kumar, Pradeep; Stanley, H. Eugene
  • The Journal of Physical Chemistry B, Vol. 115, Issue 48
  • DOI: 10.1021/jp2051867

Does viscosity describe the kinetic barrier for crystal growth from the liquidus to the glass transition?
journal, November 2010

  • Nascimento, Marcio Luis Ferreira; Dutra Zanotto, Edgar
  • The Journal of Chemical Physics, Vol. 133, Issue 17
  • DOI: 10.1063/1.3490793

Control of amorphous solid water morphology using molecular beams. I. Experimental results
journal, March 2001

  • Kimmel, Greg A.; Stevenson, K. P.; Dohnálek, Z.
  • The Journal of Chemical Physics, Vol. 114, Issue 12
  • DOI: 10.1063/1.1350580

Self-Diffusion of Supercooled Tris-naphthylbenzene
journal, April 2009

  • Swallen, Stephen F.; Traynor, Katherine; McMahon, Robert J.
  • The Journal of Physical Chemistry B, Vol. 113, Issue 14
  • DOI: 10.1021/jp808912e

Control of amorphous solid water morphology using molecular beams. II. Ballistic deposition simulations
journal, March 2001

  • Kimmel, Greg A.; Dohnálek, Z.; Stevenson, K. P.
  • The Journal of Chemical Physics, Vol. 114, Issue 12
  • DOI: 10.1063/1.1350581

Experimental Studies of the Crystallization of Supercooled Water
journal, November 1964


Configurational entropy and diffusivity of supercooled water
journal, July 2000

  • Scala, Antonio; Starr, Francis W.; La Nave, Emilia
  • Nature, Vol. 406, Issue 6792
  • DOI: 10.1038/35018034

Tuning the Liquid-Liquid Transition by Modulating the Hydrogen-Bond Angular Flexibility in a Model for Water
journal, July 2015


The fragile-to-strong dynamic crossover transition in confined water: nuclear magnetic resonance results
journal, April 2006

  • Mallamace, F.; Broccio, M.; Corsaro, C.
  • The Journal of Chemical Physics, Vol. 124, Issue 16
  • DOI: 10.1063/1.2193159

A nanosecond pulsed laser heating system for studying liquid and supercooled liquid films in ultrahigh vacuum
journal, April 2016

  • Xu, Yuntao; Dibble, Collin J.; Petrik, Nikolay G.
  • The Journal of Chemical Physics, Vol. 144, Issue 16
  • DOI: 10.1063/1.4947304

On the nature of crystal growth from the melt
journal, January 1967


The existence of supercooled liquid water at 150?K
journal, April 1999

  • Smith, R. Scott; Kay, Bruce D.
  • Nature, Vol. 398, Issue 6730
  • DOI: 10.1038/19725