DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Tandem Solar Cells from Solution-Processed CdTe and PbS Quantum Dots Using a ZnTe–ZnO Tunnel Junction

Abstract

Here, we developed a monolithic CdTe-PbS tandem solar cell architecture in which both the CdTe and PbS absorber layers are solution-processed from nanocrystal inks. Due to their tunable nature, PbS quantum dots (QDs), with a controllable band gap between 0.4 and ~1.6 eV, are a promising candidate for a bottom absorber layer in tandem photovoltaics. In the detailed balance limit, the ideal configuration of a CdTe (Eg = 1.5 eV)-PbS tandem structure assumes infinite thickness of the absorber layers and requires the PbS band gap to be 0.75 eV to theoretically achieve a power conversion efficiency (PCE) of 45%. But, modeling shows that by allowing the thickness of the CdTe layer to vary, a tandem with efficiency over 40% is achievable using bottom cell band gaps ranging from 0.68 and 1.16 eV. In a first step toward developing this technology, we explore CdTe-PbS tandem devices by developing a ZnTe-ZnO tunnel junction, which appropriately combines the two subcells in series. Furthermore, we examine the basic characteristics of the solar cells as a function of layer thickness and bottom-cell band gap and demonstrate open-circuit voltages in excess of 1.1 V with matched short circuit current density of 10 mA/cm2 in prototype devices.

Authors:
 [1];  [2];  [3];  [3];  [3];  [3];  [3];  [4];  [3];  [3]
  1. National Renewable Energy Lab. (NREL), Golden, CO (United States); Colorado School of Mines, Golden, CO (United States)
  2. National Renewable Energy Lab. (NREL), Golden, CO (United States); Univ. of Colorado, Boulder, CO (United States). Dept. of Electrical, Computer and Energy Engineering
  3. National Renewable Energy Lab. (NREL), Golden, CO (United States)
  4. Univ. of Chicago, IL (United States). Dept. of Chemistry and James Franck Inst. ; Argonne National Lab. (ANL), Argonne, IL (United States). Center for Nanoscale Materials
Publication Date:
Research Org.:
National Renewable Energy Laboratory (NREL), Golden, CO (United States); Energy Frontier Research Centers (EFRC) (United States). Center for Advanced Solar Photophysics (CASP)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Renewable Power Office. Solar Energy Technologies Office; USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1344171
Report Number(s):
NREL/JA-5900-67334
Journal ID: ISSN 1530-6984
Grant/Contract Number:  
AC36-08GO28308; AC52-06NA25396
Resource Type:
Accepted Manuscript
Journal Name:
Nano Letters
Additional Journal Information:
Journal Volume: 17; Journal Issue: 2; Journal ID: ISSN 1530-6984
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
14 SOLAR ENERGY; 77 NANOSCIENCE AND NANOTECHNOLOGY; multijunction; nanocrystals; photovoltaics; quantum dots; solar cell; tandem

Citation Formats

Crisp, Ryan W., Pach, Gregory F., Kurley, J. Matthew, France, Ryan M., Reese, Matthew O., Nanayakkara, Sanjini U., MacLeod, Bradley A., Talapin, Dmitri V., Beard, Matthew C., and Luther, Joseph M. Tandem Solar Cells from Solution-Processed CdTe and PbS Quantum Dots Using a ZnTe–ZnO Tunnel Junction. United States: N. p., 2017. Web. doi:10.1021/acs.nanolett.6b04423.
Crisp, Ryan W., Pach, Gregory F., Kurley, J. Matthew, France, Ryan M., Reese, Matthew O., Nanayakkara, Sanjini U., MacLeod, Bradley A., Talapin, Dmitri V., Beard, Matthew C., & Luther, Joseph M. Tandem Solar Cells from Solution-Processed CdTe and PbS Quantum Dots Using a ZnTe–ZnO Tunnel Junction. United States. https://doi.org/10.1021/acs.nanolett.6b04423
Crisp, Ryan W., Pach, Gregory F., Kurley, J. Matthew, France, Ryan M., Reese, Matthew O., Nanayakkara, Sanjini U., MacLeod, Bradley A., Talapin, Dmitri V., Beard, Matthew C., and Luther, Joseph M. Tue . "Tandem Solar Cells from Solution-Processed CdTe and PbS Quantum Dots Using a ZnTe–ZnO Tunnel Junction". United States. https://doi.org/10.1021/acs.nanolett.6b04423. https://www.osti.gov/servlets/purl/1344171.
@article{osti_1344171,
title = {Tandem Solar Cells from Solution-Processed CdTe and PbS Quantum Dots Using a ZnTe–ZnO Tunnel Junction},
author = {Crisp, Ryan W. and Pach, Gregory F. and Kurley, J. Matthew and France, Ryan M. and Reese, Matthew O. and Nanayakkara, Sanjini U. and MacLeod, Bradley A. and Talapin, Dmitri V. and Beard, Matthew C. and Luther, Joseph M.},
abstractNote = {Here, we developed a monolithic CdTe-PbS tandem solar cell architecture in which both the CdTe and PbS absorber layers are solution-processed from nanocrystal inks. Due to their tunable nature, PbS quantum dots (QDs), with a controllable band gap between 0.4 and ~1.6 eV, are a promising candidate for a bottom absorber layer in tandem photovoltaics. In the detailed balance limit, the ideal configuration of a CdTe (Eg = 1.5 eV)-PbS tandem structure assumes infinite thickness of the absorber layers and requires the PbS band gap to be 0.75 eV to theoretically achieve a power conversion efficiency (PCE) of 45%. But, modeling shows that by allowing the thickness of the CdTe layer to vary, a tandem with efficiency over 40% is achievable using bottom cell band gaps ranging from 0.68 and 1.16 eV. In a first step toward developing this technology, we explore CdTe-PbS tandem devices by developing a ZnTe-ZnO tunnel junction, which appropriately combines the two subcells in series. Furthermore, we examine the basic characteristics of the solar cells as a function of layer thickness and bottom-cell band gap and demonstrate open-circuit voltages in excess of 1.1 V with matched short circuit current density of 10 mA/cm2 in prototype devices.},
doi = {10.1021/acs.nanolett.6b04423},
journal = {Nano Letters},
number = 2,
volume = 17,
place = {United States},
year = {Tue Jan 10 00:00:00 EST 2017},
month = {Tue Jan 10 00:00:00 EST 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 55 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

The promise and challenge of nanostructured solar cells
journal, December 2014

  • Beard, Matthew C.; Luther, Joseph M.; Nozik, Arthur J.
  • Nature Nanotechnology, Vol. 9, Issue 12
  • DOI: 10.1038/nnano.2014.292

Commercial progress and challenges for photovoltaics
journal, January 2016


Energy-yield prediction for II–VI-based thin-film tandem solar cells
journal, January 2016

  • Mailoa, Jonathan P.; Lee, Mitchell; Peters, Ian M.
  • Energy & Environmental Science, Vol. 9, Issue 8
  • DOI: 10.1039/C6EE01778A

Quantum dots for next-generation photovoltaics
journal, November 2012


Modeling of two‐junction, series‐connected tandem solar cells using top‐cell thickness as an adjustable parameter
journal, August 1990

  • Kurtz, Sarah R.; Faine, P.; Olson, J. M.
  • Journal of Applied Physics, Vol. 68, Issue 4
  • DOI: 10.1063/1.347177

CdTe solar cells with open-circuit voltage breaking the 1 V barrier
journal, February 2016


Radiative efficiency of state-of-the-art photovoltaic cells
journal, September 2011

  • Green, Martin A.
  • Progress in Photovoltaics: Research and Applications, Vol. 20, Issue 4, p. 472-476
  • DOI: 10.1002/pip.1147

10.6% Certified Colloidal Quantum Dot Solar Cells via Solvent-Polarity-Engineered Halide Passivation
journal, June 2016


High Efficiency Solution Processed Sintered CdTe Nanocrystal Solar Cells: The Role of Interfaces
journal, January 2014

  • Panthani, Matthew G.; Kurley, J. Matthew; Crisp, Ryan W.
  • Nano Letters, Vol. 14, Issue 2
  • DOI: 10.1021/nl403912w

Solution-Processed Sintered Nanocrystal Solar Cells via Layer-by-Layer Assembly
journal, July 2011

  • Jasieniak, Jacek; MacDonald, Brandon I.; Watkins, Scott E.
  • Nano Letters, Vol. 11, Issue 7
  • DOI: 10.1021/nl201282v

Air-Stable All-Inorganic Nanocrystal Solar Cells Processed from Solution
journal, October 2005

  • Gur, Ilan; Fromer, Neil A.; Geier, Michael L.
  • Science, Vol. 310, Issue 5747, p. 462-465
  • DOI: 10.1126/science.1117908

Recent Progress on Solution-Processed CdTe Nanocrystals Solar Cells
journal, July 2016

  • Xue, Hao; Wu, Rongfang; Xie, Ya
  • Applied Sciences, Vol. 6, Issue 7
  • DOI: 10.3390/app6070197

Nanocrystal Grain Growth and Device Architectures for High-Efficiency CdTe Ink-Based Photovoltaics
journal, August 2014

  • Crisp, Ryan W.; Panthani, Matthew G.; Rance, William L.
  • ACS Nano, Vol. 8, Issue 9
  • DOI: 10.1021/nn502442g

Solution-Processed, Ultrathin Solar Cells from CdCl 3 -Capped CdTe Nanocrystals: The Multiple Roles of CdCl 3 Ligands
journal, June 2016

  • Zhang, Hao; Kurley, J. Matthew; Russell, Jake C.
  • Journal of the American Chemical Society, Vol. 138, Issue 24
  • DOI: 10.1021/jacs.6b03240

Lead Telluride Quantum Dot Solar Cells Displaying External Quantum Efficiencies Exceeding 120%
journal, November 2015


Multiple-exciton generation in lead selenide nanorod solar cells with external quantum efficiencies exceeding 120%
journal, September 2015

  • Davis, Nathaniel J. L. K.; Böhm, Marcus L.; Tabachnyk, Maxim
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms9259

Peak External Photocurrent Quantum Efficiency Exceeding 100% via MEG in a Quantum Dot Solar Cell
journal, December 2011


Solar conversion efficiency of photovoltaic and photoelectrolysis cells with carrier multiplication absorbers
journal, October 2006

  • Hanna, M. C.; Nozik, A. J.
  • Journal of Applied Physics, Vol. 100, Issue 7
  • DOI: 10.1063/1.2356795

Double-Sided Junctions Enable High-Performance Colloidal-Quantum-Dot Photovoltaics
journal, April 2016

  • Liu, Mengxia; de Arquer, F. Pelayo García; Li, Yiying
  • Advanced Materials, Vol. 28, Issue 21
  • DOI: 10.1002/adma.201506213

Solution-Processed Nanocrystal Quantum Dot Tandem Solar Cells
journal, June 2011

  • Choi, Joshua J.; Wenger, Whitney N.; Hoffman, Rachel S.
  • Advanced Materials, Vol. 23, Issue 28
  • DOI: 10.1002/adma.201100723

Tandem colloidal quantum dot solar cells employing a graded recombination layer
journal, June 2011


Hybrid tandem solar cells with depleted-heterojunction quantum dot and polymer bulk heterojunction subcells
journal, October 2015


Sintered CdTe Nanocrystal Thin Films: Determination of Optical Constants and Application in Novel Inverted Heterojunction Solar Cells
journal, May 2014

  • Yoon, Woojun; Townsend, Troy K.; Lumb, Matthew P.
  • IEEE Transactions on Nanotechnology, Vol. 13, Issue 3
  • DOI: 10.1109/TNANO.2014.2310139

Preparation and characterization of monolithic HgCdTe/CdTe tandem cells
journal, January 2004


PbSe Quantum Dot Solar Cells with More than 6% Efficiency Fabricated in Ambient Atmosphere
journal, September 2014

  • Zhang, Jianbing; Gao, Jianbo; Church, Carena P.
  • Nano Letters, Vol. 14, Issue 10
  • DOI: 10.1021/nl503085v

Metal Halide Solid-State Surface Treatment for High Efficiency PbS and PbSe QD Solar Cells
journal, April 2015

  • Crisp, Ryan W.; Kroupa, Daniel M.; Marshall, Ashley R.
  • Scientific Reports, Vol. 5, Issue 1
  • DOI: 10.1038/srep09945

14%-efficient flexible CdTe solar cells on ultra-thin glass substrates
journal, April 2014

  • Rance, W. L.; Burst, J. M.; Meysing, D. M.
  • Applied Physics Letters, Vol. 104, Issue 14
  • DOI: 10.1063/1.4870834

Controlled activation of ZnTe:Cu contacted CdTe solar cells using rapid thermal processing
journal, February 2015


Improved Open- Circuit Voltage in ZnO-PbSe Quantum Dot Solar Cells by Understanding and Reducing Losses Arising from the ZnO Conduction Band Tail
journal, February 2014

  • Hoye, Robert L. Z.; Ehrler, Bruno; Böhm, Marcus L.
  • Advanced Energy Materials, Vol. 4, Issue 8
  • DOI: 10.1002/aenm.201301544

Stability Assessment on a 3% Bilayer PbS/ZnO Quantum Dot Heterojunction Solar Cell
journal, August 2010

  • Luther, Joseph M.; Gao, Jianbo; Lloyd, Matthew T.
  • Advanced Materials, Vol. 22, Issue 33, p. 3704-3707
  • DOI: 10.1002/adma.201001148

Solar Cells Based on Junctions between Colloidal PbSe Nanocrystals and Thin ZnO Films
journal, October 2009

  • Leschkies, Kurtis S.; Beatty, Timothy J.; Kang, Moon Sung
  • ACS Nano, Vol. 3, Issue 11
  • DOI: 10.1021/nn901139d

Preparation of Cd/Pb Chalcogenide Heterostructured Janus Particles via Controllable Cation Exchange
journal, June 2015


Forging Colloidal Nanostructures via Cation Exchange Reactions
journal, February 2016


Highly reactive, flexible yet green Se precursor for metal selenide nanocrystals: Se-octadecene suspension (Se-SUS)
journal, June 2013


A comparison of the errors in determining the conversion efficiency of multijunction solar cells by various methods
journal, July 1988


Determining the Internal Quantum Efficiency of PbSe Nanocrystal Solar Cells with the Aid of an Optical Model
journal, November 2008

  • Law, Matt; Beard, Matthew C.; Choi, Sukgeun
  • Nano Letters, Vol. 8, Issue 11
  • DOI: 10.1021/nl802353x

Works referencing / citing this record:

Enhancing environmental stability of a PbS quantum dot optical fiber amplifier via rational interface design
journal, March 2018


Atomic Layer Deposition of ZnO on InP Quantum Dot Films for Charge Separation, Stabilization, and Solar Cell Formation
journal, January 2020

  • Crisp, Ryan W.; Hashemi, Fatemeh S. M.; Alkemade, Jordi
  • Advanced Materials Interfaces, Vol. 7, Issue 4
  • DOI: 10.1002/admi.201901600

Improved Reproducibility of PbS Colloidal Quantum Dots Solar Cells Using Atomic Layer–Deposited TiO 2
journal, September 2019

  • Sukharevska, Nataliia; Bederak, Dmytro; Dirin, Dmitry
  • Energy Technology, Vol. 8, Issue 1
  • DOI: 10.1002/ente.201900887

Interface Engineering for Both Cathode and Anode Enables Low‐Cost Highly Efficient Solution‐Processed CdTe Nanocrystal Solar Cells
journal, August 2019

  • Rong, Zhitao; Guo, Xiuzhen; Lian, Shaoshan
  • Advanced Functional Materials, Vol. 29, Issue 42
  • DOI: 10.1002/adfm.201904018

Realizing solution-processed monolithic PbS QDs/perovskite tandem solar cells with high UV stability
journal, January 2018

  • Zhang, Yannan; Gu, Mengfan; Li, Ning
  • Journal of Materials Chemistry A, Vol. 6, Issue 48
  • DOI: 10.1039/c8ta09164a

Towards the commercialization of colloidal quantum dot solar cells: perspectives on device structures and manufacturing
journal, January 2020

  • Lee, Hyunho; Song, Hyung-Jun; Shim, Moonsub
  • Energy & Environmental Science, Vol. 13, Issue 2
  • DOI: 10.1039/c9ee03348c

A Review on Eco-Friendly Quantum Dot Solar Cells: Materials and Manufacturing Processes
journal, April 2018

  • Choi, Hyekyoung; Jeong, Sohee
  • International Journal of Precision Engineering and Manufacturing-Green Technology, Vol. 5, Issue 2
  • DOI: 10.1007/s40684-018-0037-2

Material challenges for solar cells in the twenty-first century: directions in emerging technologies
journal, April 2018

  • Almosni, Samy; Delamarre, Amaury; Jehl, Zacharie
  • Science and Technology of Advanced Materials, Vol. 19, Issue 1
  • DOI: 10.1080/14686996.2018.1433439

Building Solar Cells from Nanocrystal Inks
journal, May 2019

  • Luo, Kaiying; Wu, Wanhua; Xie, Sihang
  • Applied Sciences, Vol. 9, Issue 9
  • DOI: 10.3390/app9091885

Applications of Phosphorene and Black Phosphorus in Energy Conversion and Storage Devices
journal, December 2017

  • Pang, Jinbo; Bachmatiuk, Alicja; Yin, Yin
  • Advanced Energy Materials, Vol. 8, Issue 8
  • DOI: 10.1002/aenm.201702093

Effect of CdTe Back Surface Field on the Efficiency Enhancement of a CGS Based Thin Film Solar Cell
journal, May 2018

  • Khattak, Yousaf Hameed; Baig, Faisal; Marí, Bernabé
  • Journal of Electronic Materials, Vol. 47, Issue 9
  • DOI: 10.1007/s11664-018-6405-4

Chloride treatment for highly efficient aqueous-processed CdTe nanocrystal-based hybrid solar cells
journal, January 2018

  • Yao, Shiyu; Liu, Leijing; Zeng, Qingsen
  • Journal of Materials Chemistry C, Vol. 6, Issue 41
  • DOI: 10.1039/c8tc03928c

14.1% CsPbI 3 Perovskite Quantum Dot Solar Cells via Cesium Cation Passivation
journal, June 2019

  • Ling, Xufeng; Zhou, Sijie; Yuan, Jianyu
  • Advanced Energy Materials, Vol. 9, Issue 28
  • DOI: 10.1002/aenm.201900721

Nanocluster-Mediated Synthesis of Diverse ZnTe Nanostructures: from Nanocrystals to 1D Nanobelts
journal, February 2018

  • Zheng, Jiaojiao; Xu, Meng; Liu, Jia
  • Chemistry - A European Journal, Vol. 24, Issue 12
  • DOI: 10.1002/chem.201705443

Solution-Processed Efficient Nanocrystal Solar Cells Based on CdTe and CdS Nanocrystals
journal, January 2018


Atomic Layer Deposition of ZnO on InP Quantum Dot Films for Charge Separation, Stabilization, and Solar Cell Formation
text, January 2020


Improved Reproducibility of PbS Colloidal Quantum Dots Solar Cells Using Atomic Layer-Deposited TiO2
text, January 2020


Spectroscopic Evidence for the Contribution of Holes to the Bleach of Cd-Chalcogenide Quantum Dots
journal, March 2019