skip to main content

DOE PAGESDOE PAGES

Title: Regional influence of wildfires on aerosol chemistry in the western US and insights into atmospheric aging of biomass burning organic aerosol

Biomass burning (BB) is one of the most important contributors to atmospheric aerosols on a global scale, and wildfires are a large source of emissions that impact regional air quality and global climate. As part of the Biomass Burning Observation Project (BBOP) field campaign in summer 2013, we deployed a high-resolution time-of-flight aerosol mass spectrometer (HR-AMS) coupled with a thermodenuder at the Mt. Bachelor Observatory (MBO, ∼  2.8 km above sea level) to characterize the impact of wildfire emissions on aerosol loading and properties in the Pacific Northwest region of the United States. MBO represents a remote background site in the western US, and it is frequently influenced by transported wildfire plumes during summer. Very clean conditions were observed at this site during periods without BB influence where the 5 min average (±1 σ) concentration of non-refractory submicron aerosols (NR-PM 1) was 3.7 ± 4.2 µg m −3. Aerosol concentration increased substantially (reaching up to 210 µg m −3 of NR-PM 1) for periods impacted by transported BB plumes, and aerosol composition was overwhelmingly organic. Based on positive matrix factorization (PMF) of the HR-AMS data, three types of BB organic aerosol (BBOA) were identified, including a fresh, semivolatile BBOA-1 (O ∕ C  =  0.35; 20 % of OA mass) that correlated well with ammonium nitrate;more » an intermediately oxidized BBOA-2 (O ∕ C  =  0.60; 17 % of OA mass); and a highly oxidized BBOA-3 (O ∕ C  =  1.06; 31 % of OA mass) that showed very low volatility with only  ∼  40 % mass loss at 200 °C. The remaining 32 % of the OA mass was attributed to a boundary layer (BL) oxygenated OA (BL-OOA; O ∕ C  =  0.69) representing OA influenced by BL dynamics and a low-volatility oxygenated OA (LV-OOA; O ∕ C  =  1.09) representing regional aerosols in the free troposphere. The mass spectrum of BBOA-3 resembled that of LV-OOA and had negligible contributions from the HR-AMS BB tracer ions – C 2H 4O 2 + ( mz = 60.021) and C 3H 5O 2 + ( mz = 73.029); nevertheless, it was unambiguously related to wildfire emissions. This finding highlights the possibility that the influence of BB emission could be underestimated in regional air masses where highly oxidized BBOA (e.g., BBOA-3) might be a significant aerosol component but where primary BBOA tracers, such as levoglucosan, are depleted. We also examined OA chemical evolution for persistent BB plume events originating from a single fire source and found that longer solar radiation led to higher mass fraction of the chemically aged BBOA-2 and BBOA-3 and more oxidized aerosol. However, an analysis of the enhancement ratios of OA relative to CO (ΔOA ∕ΔCO) showed little difference between BB plumes transported primarily at night versus during the day, despite evidence of substantial chemical transformation in OA induced by photooxidation. These results indicate negligible net OA production in photochemically aged wildfire plumes observed in this study, for which a possible reason is that SOA formation was almost entirely balanced by BBOA volatilization. Nevertheless, the formation and chemical transformation of BBOA during atmospheric transport can significantly influence downwind sites with important implications for health and climate.« less
Authors:
 [1] ;  [1] ;  [2] ;  [3] ;  [2] ;  [4] ;  [4] ; ORCiD logo [5] ; ORCiD logo [1]
  1. Univ. of California, Davis, CA (United States)
  2. Univ. of Washington, Bothell, WA (United States); Univ. of Washington, Seattle, WA (United States)
  3. Univ. of Washington, Bothell, WA (United States); Univ. of Washington, Seattle, WA (United States); Gradient, Seattle, WA (United States)
  4. Brookhaven National Lab. (BNL), Upton, NY (United States)
  5. Aerodyne Research Inc., Billerica, MA (United States)
Publication Date:
Report Number(s):
BNL-113762-2017-JA
Journal ID: ISSN 1680-7324; R&D Project: 2016-BNL-EE630EECA-Budg; KP1701000
Grant/Contract Number:
SC00112704; SC0014620; SC0007178
Type:
Published Article
Journal Name:
Atmospheric Chemistry and Physics (Online)
Additional Journal Information:
Journal Name: Atmospheric Chemistry and Physics (Online); Journal Volume: 17; Journal Issue: 3; Journal ID: ISSN 1680-7324
Publisher:
European Geosciences Union
Research Org:
Brookhaven National Laboratory (BNL), Upton, NY (United States)
Sponsoring Org:
USDOE Office of Science (SC), Biological and Environmental Research (BER) (SC-23)
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES
OSTI Identifier:
1344026
Alternate Identifier(s):
OSTI ID: 1351745

Zhou, Shan, Collier, Sonya, Jaffe, Daniel A., Briggs, Nicole L., Hee, Jonathan, Sedlacek, III, Arthur J., Kleinman, Lawrence, Onasch, Timothy B., and Zhang, Qi. Regional influence of wildfires on aerosol chemistry in the western US and insights into atmospheric aging of biomass burning organic aerosol. United States: N. p., Web. doi:10.5194/acp-17-2477-2017.
Zhou, Shan, Collier, Sonya, Jaffe, Daniel A., Briggs, Nicole L., Hee, Jonathan, Sedlacek, III, Arthur J., Kleinman, Lawrence, Onasch, Timothy B., & Zhang, Qi. Regional influence of wildfires on aerosol chemistry in the western US and insights into atmospheric aging of biomass burning organic aerosol. United States. doi:10.5194/acp-17-2477-2017.
Zhou, Shan, Collier, Sonya, Jaffe, Daniel A., Briggs, Nicole L., Hee, Jonathan, Sedlacek, III, Arthur J., Kleinman, Lawrence, Onasch, Timothy B., and Zhang, Qi. 2017. "Regional influence of wildfires on aerosol chemistry in the western US and insights into atmospheric aging of biomass burning organic aerosol". United States. doi:10.5194/acp-17-2477-2017.
@article{osti_1344026,
title = {Regional influence of wildfires on aerosol chemistry in the western US and insights into atmospheric aging of biomass burning organic aerosol},
author = {Zhou, Shan and Collier, Sonya and Jaffe, Daniel A. and Briggs, Nicole L. and Hee, Jonathan and Sedlacek, III, Arthur J. and Kleinman, Lawrence and Onasch, Timothy B. and Zhang, Qi},
abstractNote = {Biomass burning (BB) is one of the most important contributors to atmospheric aerosols on a global scale, and wildfires are a large source of emissions that impact regional air quality and global climate. As part of the Biomass Burning Observation Project (BBOP) field campaign in summer 2013, we deployed a high-resolution time-of-flight aerosol mass spectrometer (HR-AMS) coupled with a thermodenuder at the Mt. Bachelor Observatory (MBO, ∼  2.8 km above sea level) to characterize the impact of wildfire emissions on aerosol loading and properties in the Pacific Northwest region of the United States. MBO represents a remote background site in the western US, and it is frequently influenced by transported wildfire plumes during summer. Very clean conditions were observed at this site during periods without BB influence where the 5 min average (±1σ) concentration of non-refractory submicron aerosols (NR-PM1) was 3.7 ± 4.2 µg m−3. Aerosol concentration increased substantially (reaching up to 210 µg m−3 of NR-PM1) for periods impacted by transported BB plumes, and aerosol composition was overwhelmingly organic. Based on positive matrix factorization (PMF) of the HR-AMS data, three types of BB organic aerosol (BBOA) were identified, including a fresh, semivolatile BBOA-1 (O ∕ C  =  0.35; 20 % of OA mass) that correlated well with ammonium nitrate; an intermediately oxidized BBOA-2 (O ∕ C  =  0.60; 17 % of OA mass); and a highly oxidized BBOA-3 (O ∕ C  =  1.06; 31 % of OA mass) that showed very low volatility with only  ∼  40 % mass loss at 200 °C. The remaining 32 % of the OA mass was attributed to a boundary layer (BL) oxygenated OA (BL-OOA; O ∕ C  =  0.69) representing OA influenced by BL dynamics and a low-volatility oxygenated OA (LV-OOA; O ∕ C  =  1.09) representing regional aerosols in the free troposphere. The mass spectrum of BBOA-3 resembled that of LV-OOA and had negligible contributions from the HR-AMS BB tracer ions – C2H4O2+ (m∕z = 60.021) and C3H5O2+ (m∕z = 73.029); nevertheless, it was unambiguously related to wildfire emissions. This finding highlights the possibility that the influence of BB emission could be underestimated in regional air masses where highly oxidized BBOA (e.g., BBOA-3) might be a significant aerosol component but where primary BBOA tracers, such as levoglucosan, are depleted. We also examined OA chemical evolution for persistent BB plume events originating from a single fire source and found that longer solar radiation led to higher mass fraction of the chemically aged BBOA-2 and BBOA-3 and more oxidized aerosol. However, an analysis of the enhancement ratios of OA relative to CO (ΔOA ∕ΔCO) showed little difference between BB plumes transported primarily at night versus during the day, despite evidence of substantial chemical transformation in OA induced by photooxidation. These results indicate negligible net OA production in photochemically aged wildfire plumes observed in this study, for which a possible reason is that SOA formation was almost entirely balanced by BBOA volatilization. Nevertheless, the formation and chemical transformation of BBOA during atmospheric transport can significantly influence downwind sites with important implications for health and climate.},
doi = {10.5194/acp-17-2477-2017},
journal = {Atmospheric Chemistry and Physics (Online)},
number = 3,
volume = 17,
place = {United States},
year = {2017},
month = {2}
}