skip to main content

DOE PAGESDOE PAGES

Title: The Chlorella vulgaris S-Nitrosoproteome under Nitrogen-Replete and -Deplete Conditions

Oleaginous microalgae synthesize and accumulate large quantities of lipids that are promising feedstocks for the production of biofuels (Hu et al., 2008; Williams and Laurens, 2010; Day et al., 2012; Quinn and Davis, 2015). The algal species Chlorella vulgaris accumulates triacylglycerides that dominate its cellular composition (>60% lipid based on dry cell weight) when cultured in medium lacking a nitrogen source (Guarnieri et al., 2011; Ikaran et al., 2015), which is a 'lipid trigger' in an array of microalgae. As such, C. vulgaris represents a model algal species for examination of lipid accumulation mechanisms and a potential deployment organism in industrial algal biofuels applications. C. vulgaris has been extensively characterized biochemically and physiologically (Converti et al., 2009; Liang et al., 2009), and de novo-generated transcriptomic and proteomic datasets have indicated that post-transcriptional and -translational mechanisms likely govern lipid accumulation in response to nitrogen starvation (Guarnieri et al., 2011, 2013). However, the specific mechanisms underlying lipid biosynthesis in response to nitrogen stress remain elusive.
Authors:
 [1] ;  [1] ;  [1]
  1. National Renewable Energy Lab. (NREL), Golden, CO (United States)
Publication Date:
Report Number(s):
NREL/JA-5100-67658
Journal ID: ISSN 2296-4185
Grant/Contract Number:
AC36-08GO28308
Type:
Accepted Manuscript
Journal Name:
Frontiers in Bioengineering and Biotechnology
Additional Journal Information:
Journal Volume: 4; Journal ID: ISSN 2296-4185
Publisher:
Frontiers Research Foundation
Research Org:
National Renewable Energy Lab. (NREL), Golden, CO (United States)
Sponsoring Org:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), NREL Laboratory Directed Research and Development (LDRD)
Country of Publication:
United States
Language:
English
Subject:
09 BIOMASS FUELS; Chlorella; biofuels; microalgae; S-nitrosylation; nitric oxide
OSTI Identifier:
1343391