skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Nanointerface-driven reversible hydrogen storage in the nanoconfined Li-N-H system

Abstract

Internal interfaces in the Li 3N/[LiNH 2 + 2LiH] solid-state hydrogen storage system alter the hydrogenation and dehydrogenation reaction pathways upon nanosizing, suppressing undesirable intermediate phases to dramatically improve kinetics and reversibility. Finally, the key role of solid interfaces in determining thermodynamics and kinetics suggests a new paradigm for optimizing complex hydrides for solid-state hydrogen storage by engineering internal microstructure.

Authors:
 [1];  [2];  [3];  [1];  [1];  [2];  [4];  [1];  [3];  [2];  [3]
  1. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  2. Sandia National Lab. (SNL-CA), Livermore, CA (United States)
  3. Mahidol Univ., Bangkok (Thailand)
  4. National Institute of Standards and Technology, Gaithersburg MD (United States)
Publication Date:
Research Org.:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Fuel Cell Technologies Office (EE-3F)
OSTI Identifier:
1343054
Alternate Identifier(s):
OSTI ID: 1400815; OSTI ID: 1461737; OSTI ID: 1489471
Report Number(s):
SAND-2016-9601J; LLNL-JRNL-676756; LLNL-JRNL-755045
Journal ID: ISSN 2196-7350; 647756
Grant/Contract Number:  
AC04-94AL85000; AC52-07NA27344
Resource Type:
Accepted Manuscript
Journal Name:
Advanced Materials Interfaces
Additional Journal Information:
Journal Volume: 4; Journal Issue: 3; Journal ID: ISSN 2196-7350
Publisher:
Wiley-VCH
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; hydrogen storage; interfaces; metal hydrides; nanoconfinement; solid-state reactions; Materials science, Nanoscience and Nanotechnology, Energy - Hydrogen, Chemistry - Inorganic, organic, physical and analytical chemistry, Physics - Solid state physics

Citation Formats

Wood, Brandon C., Stavila, Vitalie, Poonyayant, Natchapol, Heo, Tae Wook, Ray, Keith G., Klebanoff, Leonard E., Udovic, Terrence J., Lee, Jonathan R. I., Angboonpong, Natee, Sugar, Joshua D., and Pakawatpanurut, Pasit. Nanointerface-driven reversible hydrogen storage in the nanoconfined Li-N-H system. United States: N. p., 2017. Web. doi:10.1002/admi.201600803.
Wood, Brandon C., Stavila, Vitalie, Poonyayant, Natchapol, Heo, Tae Wook, Ray, Keith G., Klebanoff, Leonard E., Udovic, Terrence J., Lee, Jonathan R. I., Angboonpong, Natee, Sugar, Joshua D., & Pakawatpanurut, Pasit. Nanointerface-driven reversible hydrogen storage in the nanoconfined Li-N-H system. United States. doi:10.1002/admi.201600803.
Wood, Brandon C., Stavila, Vitalie, Poonyayant, Natchapol, Heo, Tae Wook, Ray, Keith G., Klebanoff, Leonard E., Udovic, Terrence J., Lee, Jonathan R. I., Angboonpong, Natee, Sugar, Joshua D., and Pakawatpanurut, Pasit. Fri . "Nanointerface-driven reversible hydrogen storage in the nanoconfined Li-N-H system". United States. doi:10.1002/admi.201600803. https://www.osti.gov/servlets/purl/1343054.
@article{osti_1343054,
title = {Nanointerface-driven reversible hydrogen storage in the nanoconfined Li-N-H system},
author = {Wood, Brandon C. and Stavila, Vitalie and Poonyayant, Natchapol and Heo, Tae Wook and Ray, Keith G. and Klebanoff, Leonard E. and Udovic, Terrence J. and Lee, Jonathan R. I. and Angboonpong, Natee and Sugar, Joshua D. and Pakawatpanurut, Pasit},
abstractNote = {Internal interfaces in the Li3N/[LiNH2 + 2LiH] solid-state hydrogen storage system alter the hydrogenation and dehydrogenation reaction pathways upon nanosizing, suppressing undesirable intermediate phases to dramatically improve kinetics and reversibility. Finally, the key role of solid interfaces in determining thermodynamics and kinetics suggests a new paradigm for optimizing complex hydrides for solid-state hydrogen storage by engineering internal microstructure.},
doi = {10.1002/admi.201600803},
journal = {Advanced Materials Interfaces},
number = 3,
volume = 4,
place = {United States},
year = {2017},
month = {1}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Figures / Tables:

Figure 1 Figure 1: Schematic microstructure of the [LiNH2+2LiH]/[Li2NH+LiH]/Li3N system. Panels (a) and (b) indicate hydrogenation and dehydrogenation, respectively. The nitrogencontaining phases (blue=LiNH2, pink=Li2NH, gray=Li3N) form a contiguous core-shell structure with phase boundaries propagating along the directions indicated by small arrows. (a) During hydrogenation, LiH (green) is assumed to evolve from (i)more » a dispersed molecular, cluster, or solid-solution state to (ii) nucleated crystallites that eventually (iii) coarsen. (b) Dehydrogenation follows the reverse pathway. Smaller particles favor the dispersed LiH state (i) due to interfacial penalties associated with nucleation. ((Figure Caption.))« less

Save / Share:

Works referenced in this record:

Hydrogen Desorption Mechanism in a Li−N−H System by Means of the Isotopic Exchange Technique
journal, August 2005

  • Isobe, Shigehito; Ichikawa, Takayuki; Hino, Satoshi
  • The Journal of Physical Chemistry B, Vol. 109, Issue 31
  • DOI: 10.1021/jp051889e

Thermodynamic and structural characterization of the Mg–Li–N–H hydrogen storage system
journal, January 2006


A Mechanism for Non-stoichiometry in the Lithium Amide/Lithium Imide Hydrogen Storage Reaction
journal, February 2007

  • David, William I. F.; Jones, Martin O.; Gregory, Duncan H.
  • Journal of the American Chemical Society, Vol. 129, Issue 6
  • DOI: 10.1021/ja066016s

Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

Mechanism of Novel Reaction from LiNH 2 and LiH to Li 2 NH and H 2 as a Promising Hydrogen Storage System
journal, June 2004

  • Ichikawa, Takayuki; Hanada, Nobuko; Isobe, Shigehito
  • The Journal of Physical Chemistry B, Vol. 108, Issue 23
  • DOI: 10.1021/jp049968y

Complex Hydrides for Hydrogen Storage
journal, October 2007

  • Orimo, Shin-ichi; Nakamori, Yuko; Eliseo, Jennifer R.
  • Chemical Reviews, Vol. 107, Issue 10
  • DOI: 10.1021/cr0501846

The Particle-Size Dependence of the Activation Energy for Decomposition of Lithium Amide
journal, July 2011

  • Hoang, Khang; Janotti, Anderson; Van de Walle, Chris G.
  • Angewandte Chemie, Vol. 123, Issue 43
  • DOI: 10.1002/ange.201100810

Effects of mechanical activation on dehydrogenation of the lithium amide and lithium hydride system
journal, January 2008


Lithium nitride for reversible hydrogen storage
journal, February 2004

  • Ichikawa, Takayuki; Isobe, Shigehito; Hanada, Nobuko
  • Journal of Alloys and Compounds, Vol. 365, Issue 1-2, p. 271-276
  • DOI: 10.1016/S0925-8388(03)00637-6

Nanoconfined hydrides for energy storage
journal, January 2011

  • Nielsen, Thomas K.; Besenbacher, Flemming; Jensen, Torben R.
  • Nanoscale, Vol. 3, Issue 5
  • DOI: 10.1039/c0nr00725k

Phase evolution of Li2ND, LiD and LiND2 in hydriding/dehydriding of Li3N
journal, October 2007


Recent development on hydrogen storage properties in metal–N–H systems
journal, September 2006


Materials design and modification on amide-based composites for hydrogen storage
journal, December 2012

  • Cao, Hujun; Zhang, Yao; Wang, Jianhui
  • Progress in Natural Science: Materials International, Vol. 22, Issue 6
  • DOI: 10.1016/j.pnsc.2012.11.013

Reaction Paths between LiNH 2 and LiH with Effects of Nitrides
journal, November 2007

  • Aguey-Zinsou, Kondo-Francois; Yao, Jinhan; Guo, Z. Xiao
  • The Journal of Physical Chemistry B, Vol. 111, Issue 43
  • DOI: 10.1021/jp075002l

Mitigation of Hydrogen Capacity Losses during Pressure Cycling of the Li3N–H System by the Addition of Nitrogen
journal, July 2011

  • Lamb, Joshua; Chandra, Dhanesh; Chien, Wen-Ming
  • The Journal of Physical Chemistry C, Vol. 115, Issue 29, p. 14386-14391
  • DOI: 10.1021/jp2023742

QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials
journal, September 2009

  • Giannozzi, Paolo; Baroni, Stefano; Bonini, Nicola
  • Journal of Physics: Condensed Matter, Vol. 21, Issue 39, Article No. 395502
  • DOI: 10.1088/0953-8984/21/39/395502

Lithium nitrides, imides and amides as lightweight, reversible hydrogen stores
journal, January 2008

  • Gregory, Duncan H.
  • Journal of Materials Chemistry, Vol. 18, Issue 20
  • DOI: 10.1039/b801021h

In situ X-ray powder diffraction studies of hydrogen storage and release in the Li–N–H system
journal, January 2014

  • Makepeace, Joshua W.; Jones, Martin O.; Callear, Samantha K.
  • Physical Chemistry Chemical Physics, Vol. 16, Issue 9
  • DOI: 10.1039/c4cp00087k

Nanoconfined light metal hydrides for reversible hydrogen storage
journal, June 2013

  • de Jongh, Petra E.; Allendorf, Mark; Vajo, John J.
  • MRS Bulletin, Vol. 38, Issue 6
  • DOI: 10.1557/mrs.2013.108

Interaction of hydrogen with metal nitrides and imides
journal, November 2002

  • Chen, Ping; Xiong, Zhitao; Luo, Jizhong
  • Nature, Vol. 420, Issue 6913, p. 302-304
  • DOI: 10.1038/nature01210

The reaction pathway and rate-limiting step of dehydrogenation of the LiHN2+LiH mixture
journal, March 2008


Mechanisms for the decomposition and dehydrogenation of Li amide/imide
journal, February 2012


Nanostructured materials for advanced energy conversion and storage devices
journal, May 2005

  • Aricò, Antonino Salvatore; Bruce, Peter; Scrosati, Bruno
  • Nature Materials, Vol. 4, Issue 5, p. 366-377
  • DOI: 10.1038/nmat1368

Enhancement of Lithium Amide to Lithium Imide Transition via Mechanical Activation
journal, October 2006

  • Markmaitree, Tippawan; Ren, Ruiming; Shaw, Leon L.
  • The Journal of Physical Chemistry B, Vol. 110, Issue 41
  • DOI: 10.1021/jp060181c

Soft self-consistent pseudopotentials in a generalized eigenvalue formalism
journal, April 1990


Amides and borohydrides for high-capacity solid-state hydrogen storage—materials design and kinetic improvements
journal, June 2013


Effect of the structural evolution on the ionic conductivity of Li-N-H system during the dehydrogenation
journal, May 2016

  • Paik, Biswajit; Matsuo, Motoaki; Sato, Toyoto
  • Applied Physics Letters, Vol. 108, Issue 21
  • DOI: 10.1063/1.4952601

Solution phenomena in liquid ammonia
journal, January 1971


Interaction between Lithium Amide and Lithium Hydride
journal, October 2003

  • Chen, Ping; Xiong, Zhitao; Luo, Jizhong
  • The Journal of Physical Chemistry B, Vol. 107, Issue 39, p. 10967-10970
  • DOI: 10.1021/jp034149j

Dehydriding reactions of mixed complex hydrides
journal, April 2006


Influence of nano-confinement on the thermodynamics and dehydrogenation kinetics of metal hydrides
journal, April 2011


Effect of Particle Size on Hydrogen Release from Sodium Alanate Nanoparticles
journal, September 2010


The Role of Surface and Interface Energy on Phase Stability of Nanosized Insertion Compounds
journal, April 2009

  • Wagemaker, Marnix; Mulder, Fokko M.; Van der Ven, Anton
  • Advanced Materials, Vol. 21, Issue 25-26
  • DOI: 10.1002/adma.200803038

NaBH 4 in “Graphene Wrapper:” Significantly Enhanced Hydrogen Storage Capacity and Regenerability through Nanoencapsulation
journal, July 2015

  • Chong, Lina; Zeng, Xiaoqin; Ding, Wenjiang
  • Advanced Materials, Vol. 27, Issue 34
  • DOI: 10.1002/adma.201500831

New Metal−N−H System Composed of Mg(NH 2 ) 2 and LiH for Hydrogen Storage
journal, July 2004

  • Leng, Haiyan Y.; Ichikawa, Takayuki; Hino, Satoshi
  • The Journal of Physical Chemistry B, Vol. 108, Issue 26
  • DOI: 10.1021/jp048002j

Properties of nanoscale metal hydrides
journal, April 2009


Energetics of the Li amide/Li imide hydrogen storage reaction
journal, September 2005


Modification of the hydrogen storage properties of Li3N by confinement into mesoporous carbons
journal, January 2011

  • Demir-Cakan, Rezan; Tang, Wan Si; Darwiche, Ali
  • Energy & Environmental Science, Vol. 4, Issue 9, p. 3625-3631
  • DOI: 10.1039/c1ee01387d

Graphene oxide/metal nanocrystal multilaminates as the atomic limit for safe and selective hydrogen storage
journal, February 2016

  • Cho, Eun Seon; Ruminski, Anne M.; Aloni, Shaul
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms10804

Structural Studies of Deuteration and Dedeuteration of Li 3 N by Use of In Situ Neutron Diffraction
journal, July 2007

  • Huq, Ashfia; Richardson, James W.; Maxey, Evan R.
  • The Journal of Physical Chemistry C, Vol. 111, Issue 28
  • DOI: 10.1021/jp070026d

    Works referencing / citing this record:

    Biological hydrogen production: molecular and electrolytic perspectives
    journal, July 2019

    • Mahidhara, Ganesh; Burrow, Hannah; Sasikala, Ch.
    • World Journal of Microbiology and Biotechnology, Vol. 35, Issue 8
    • DOI: 10.1007/s11274-019-2692-z

    Biological hydrogen production: molecular and electrolytic perspectives
    journal, July 2019

    • Mahidhara, Ganesh; Burrow, Hannah; Sasikala, Ch.
    • World Journal of Microbiology and Biotechnology, Vol. 35, Issue 8
    • DOI: 10.1007/s11274-019-2692-z