skip to main content


Title: Impact of hydrogen bonding on dynamics of hydroxyl-terminated polydimethylsiloxane

Dielectric spectroscopy, rheology, and differential scanning calorimetry were employed to study the effect of chain-end hydrogen bonding on the dynamics of hydroxylterminated polydimethylsiloxane. We demonstrate that hydrogen bonding has a strong influence on both segmental and slower dynamics in the systems with low molecular weights. In particular, the decrease in the chain length leads to an increase of the glass transition temperature, viscosity, and fragility index, at variance with the usual behavior of nonassociating polymers. The supramolecular association of hydroxylterminated chains leads to the emergence in dielectric and mechanical relaxation spectra of the so-called Debye process traditionally observed in monohydroxy alcohols. Our analysis suggests that the hydroxyl-terminated PDMS oligomers may associate in brush-like or chain-like structures, depending on the size of their covalent chains. Finally, the effective length of the linear-associated chains was estimated from the rheological measurements.
 [1] ;  [1] ;  [2] ;  [3] ;  [4]
  1. Univ. of Tennessee, Knoxville, TN (United States)
  2. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  3. Univ. of Tennessee, Knoxville, TN (United States); Technische Univ. Dortmund, Dortmund (Germany)
  4. Univ. of Tennessee, Knoxville, TN (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Publication Date:
Grant/Contract Number:
Accepted Manuscript
Journal Name:
Additional Journal Information:
Journal Volume: 49; Journal Issue: 8; Journal ID: ISSN 0024-9297
American Chemical Society
Research Org:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org:
USDOE Office of Science (SC)
Country of Publication:
United States
36 MATERIALS SCIENCE; hydrogen bonds; associating polymers; Debye process; dielectric spectroscopy; rheology
OSTI Identifier: