skip to main content

DOE PAGESDOE PAGES

Title: Indirect drive ignition at the National Ignition Facility

This paper reviews scientific results from the pursuit of indirect drive ignition on the National Ignition Facility (NIF) and describes the program's forward looking research directions. In indirect drive on the NIF, laser beams heat an x-ray enclosure called a hohlraum that surrounds a spherical pellet. X-ray radiation ablates the surface of the pellet, imploding a thin shell of deuterium/tritium (DT) that must accelerate to high velocity (v > 350 km s –1) and compress by a factor of several thousand. Since 2009, substantial progress has been made in understanding the major challenges to ignition: Rayleigh Taylor (RT) instability seeded by target imperfections; and low-mode asymmetries in the hohlraum x-ray drive, exacerbated by laser-plasma instabilities (LPI). Requirements on velocity, symmetry, and compression have been demonstrated separately on the NIF but have not been achieved simultaneously. We now know that the RT instability, seeded mainly by the capsule support tent, severely degraded DT implosions from 2009–2012. Experiments using a 'high-foot' drive with demonstrated lower RT growth improved the thermonuclear yield by a factor of 10, resulting in yield amplification due to alpha particle heating by more than a factor of 2. Furthermore, large time dependent drive asymmetry in the LPI-dominated hohlraumsmore » remains unchanged, preventing further improvements. High fidelity 3D hydrodynamic calculations explain these results. Future research efforts focus on improved capsule mounting techniques and on hohlraums with little LPI and controllable symmetry. In parallel, we are pursuing improvements to the basic physics models used in the design codes through focused physics experiments.« less
Authors:
 [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] more »;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [2] ;  [1] ;  [1] ;  [1] ;  [1] ;  [3] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [4] ;  [1] « less
  1. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  2. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  3. SLAC National Accelerator Lab., Menlo Park, CA (United States)
  4. Univ. of Rochester, Rochester, NY (United States)
Publication Date:
Report Number(s):
LLNL-JRNL-696077
Journal ID: ISSN 0741-3335
Grant/Contract Number:
AC52-07NA27344; AC02-76SF00515
Type:
Accepted Manuscript
Journal Name:
Plasma Physics and Controlled Fusion
Additional Journal Information:
Journal Volume: 59; Journal Issue: 1; Journal ID: ISSN 0741-3335
Publisher:
IOP Science
Research Org:
SLAC National Accelerator Lab., Menlo Park, CA (United States); Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org:
USDOE
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; inertial confinement fusion; lasers; plasmas; 70 PLASMA PHYSICS AND FUSION
OSTI Identifier:
1341962
Alternate Identifier(s):
OSTI ID: 1340601

Meezan, N. B., Edwards, M. J., Hurricane, O. A., Patel, P. K., Callahan, D. A., Hsing, W. W., Town, R. P. J., Albert, F., Amendt, P. A., Berzak Hopkins, L. F., Bradley, D. K., Casey, D. T., Clark, D. S., Dewald, E. L., Dittrich, T. R., Divol, L., Doppner, T., Field, J. E., Haan, S. W., Hall, G. N., Hammel, B. A., Hinkel, D. E., Ho, D. D., Hohenberger, M., Izumi, N., Jones, O. S., Khan, S. F., Kline, J. L., Kritcher, A. L., Landen, O. L., LePape, S., Ma, T., MacKinnon, A. J., MacPhee, A. G., Masse, L., Milovich, J. L., Nikroo, A., Pak, A., Park, H. -S., Peterson, J. L., Robey, H. F., Ross, J. S., Salmonson, J. D., Smalyuk, V. A., Spears, B. K., Stadermann, M., Suter, L. J., Thomas, C. A., Tommasini, R., Turnbull, D. P., and Weber, C. R.. Indirect drive ignition at the National Ignition Facility. United States: N. p., Web. doi:10.1088/0741-3335/59/1/014021.
Meezan, N. B., Edwards, M. J., Hurricane, O. A., Patel, P. K., Callahan, D. A., Hsing, W. W., Town, R. P. J., Albert, F., Amendt, P. A., Berzak Hopkins, L. F., Bradley, D. K., Casey, D. T., Clark, D. S., Dewald, E. L., Dittrich, T. R., Divol, L., Doppner, T., Field, J. E., Haan, S. W., Hall, G. N., Hammel, B. A., Hinkel, D. E., Ho, D. D., Hohenberger, M., Izumi, N., Jones, O. S., Khan, S. F., Kline, J. L., Kritcher, A. L., Landen, O. L., LePape, S., Ma, T., MacKinnon, A. J., MacPhee, A. G., Masse, L., Milovich, J. L., Nikroo, A., Pak, A., Park, H. -S., Peterson, J. L., Robey, H. F., Ross, J. S., Salmonson, J. D., Smalyuk, V. A., Spears, B. K., Stadermann, M., Suter, L. J., Thomas, C. A., Tommasini, R., Turnbull, D. P., & Weber, C. R.. Indirect drive ignition at the National Ignition Facility. United States. doi:10.1088/0741-3335/59/1/014021.
Meezan, N. B., Edwards, M. J., Hurricane, O. A., Patel, P. K., Callahan, D. A., Hsing, W. W., Town, R. P. J., Albert, F., Amendt, P. A., Berzak Hopkins, L. F., Bradley, D. K., Casey, D. T., Clark, D. S., Dewald, E. L., Dittrich, T. R., Divol, L., Doppner, T., Field, J. E., Haan, S. W., Hall, G. N., Hammel, B. A., Hinkel, D. E., Ho, D. D., Hohenberger, M., Izumi, N., Jones, O. S., Khan, S. F., Kline, J. L., Kritcher, A. L., Landen, O. L., LePape, S., Ma, T., MacKinnon, A. J., MacPhee, A. G., Masse, L., Milovich, J. L., Nikroo, A., Pak, A., Park, H. -S., Peterson, J. L., Robey, H. F., Ross, J. S., Salmonson, J. D., Smalyuk, V. A., Spears, B. K., Stadermann, M., Suter, L. J., Thomas, C. A., Tommasini, R., Turnbull, D. P., and Weber, C. R.. 2016. "Indirect drive ignition at the National Ignition Facility". United States. doi:10.1088/0741-3335/59/1/014021. https://www.osti.gov/servlets/purl/1341962.
@article{osti_1341962,
title = {Indirect drive ignition at the National Ignition Facility},
author = {Meezan, N. B. and Edwards, M. J. and Hurricane, O. A. and Patel, P. K. and Callahan, D. A. and Hsing, W. W. and Town, R. P. J. and Albert, F. and Amendt, P. A. and Berzak Hopkins, L. F. and Bradley, D. K. and Casey, D. T. and Clark, D. S. and Dewald, E. L. and Dittrich, T. R. and Divol, L. and Doppner, T. and Field, J. E. and Haan, S. W. and Hall, G. N. and Hammel, B. A. and Hinkel, D. E. and Ho, D. D. and Hohenberger, M. and Izumi, N. and Jones, O. S. and Khan, S. F. and Kline, J. L. and Kritcher, A. L. and Landen, O. L. and LePape, S. and Ma, T. and MacKinnon, A. J. and MacPhee, A. G. and Masse, L. and Milovich, J. L. and Nikroo, A. and Pak, A. and Park, H. -S. and Peterson, J. L. and Robey, H. F. and Ross, J. S. and Salmonson, J. D. and Smalyuk, V. A. and Spears, B. K. and Stadermann, M. and Suter, L. J. and Thomas, C. A. and Tommasini, R. and Turnbull, D. P. and Weber, C. R.},
abstractNote = {This paper reviews scientific results from the pursuit of indirect drive ignition on the National Ignition Facility (NIF) and describes the program's forward looking research directions. In indirect drive on the NIF, laser beams heat an x-ray enclosure called a hohlraum that surrounds a spherical pellet. X-ray radiation ablates the surface of the pellet, imploding a thin shell of deuterium/tritium (DT) that must accelerate to high velocity (v > 350 km s–1) and compress by a factor of several thousand. Since 2009, substantial progress has been made in understanding the major challenges to ignition: Rayleigh Taylor (RT) instability seeded by target imperfections; and low-mode asymmetries in the hohlraum x-ray drive, exacerbated by laser-plasma instabilities (LPI). Requirements on velocity, symmetry, and compression have been demonstrated separately on the NIF but have not been achieved simultaneously. We now know that the RT instability, seeded mainly by the capsule support tent, severely degraded DT implosions from 2009–2012. Experiments using a 'high-foot' drive with demonstrated lower RT growth improved the thermonuclear yield by a factor of 10, resulting in yield amplification due to alpha particle heating by more than a factor of 2. Furthermore, large time dependent drive asymmetry in the LPI-dominated hohlraums remains unchanged, preventing further improvements. High fidelity 3D hydrodynamic calculations explain these results. Future research efforts focus on improved capsule mounting techniques and on hohlraums with little LPI and controllable symmetry. In parallel, we are pursuing improvements to the basic physics models used in the design codes through focused physics experiments.},
doi = {10.1088/0741-3335/59/1/014021},
journal = {Plasma Physics and Controlled Fusion},
number = 1,
volume = 59,
place = {United States},
year = {2016},
month = {10}
}