DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Improved measurement of the reactor antineutrino flux and spectrum at Daya Bay

Abstract

© Article funded by SCOAP3 and published under licence by Chinese Physical Society and the Institute of High Energy Physics of the Chinese Academy of Sciences and the Institute of Modern Physics of the Chinese Academy of Sciences and IOP Publishing Ltd. A new measurement of the reactor antineutrino flux and energy spectrum by the Daya Bay reactor neutrino experiment is reported. The antineutrinos were generated by six 2.9 GW th nuclear reactors and detected by eight antineutrino detectors deployed in two near (560 m and 600 m flux-weighted baselines) and one far (1640 m flux-weighted baseline) underground experimental halls. With 621 days of data, more than 1.2 million inverse beta decay (IBD) candidates were detected. The IBD yield in the eight detectors was measured, and the ratio of measured to predicted flux was found to be 0.946±0.020 (0.992±0.021) for the Huber+Mueller (ILL+Vogel) model. A 2.9σ deviation was found in the measured IBD positron energy spectrum compared to the predictions. In particular, an excess of events in the region of 4-6 MeV was found in the measured spectrum, with a local significance of 4.4σ. A reactor antineutrino spectrum weighted by the IBD cross section is extracted for model-independent predictions.

Authors:
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publication Date:
Research Org.:
Brookhaven National Laboratory (BNL), Upton, NY (United States); Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), High Energy Physics (HEP); Ministry of Science and Technology of China; Chinese Academy of Sciences; U.S. National Science Foundation (NSF); Joint Institute of Nuclear Research in Russia; Ministry of Education, Youth and Sports of the Czech Republic; National Commission for Scienti c and Technological Research of Chile
Contributing Org.:
Daya Bay Collaboration
OSTI Identifier:
1341712
Alternate Identifier(s):
OSTI ID: 1408413
Report Number(s):
BNL-113493-2017-JA
Journal ID: ISSN 1674-1137; R&D Project: PO-022; KA2201020; TRN: US1701050
Grant/Contract Number:  
SC0012704; AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
Chinese Physics C, High Energy Physics and Nuclear Physics
Additional Journal Information:
Journal Volume: 41; Journal Issue: 1; Journal ID: ISSN 1674-1137
Publisher:
IOP Publishing
Country of Publication:
United States
Language:
English
Subject:
72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS; antineutrino; flux energy; spectrum; reactor; Daya Bay

Citation Formats

An, F. P., Balantekin, A. B., Band, H. R., Bishai, M., Blyth, S., Cao, D., Cao, G. F., Cao, J., Cen, W. R., Chan, Y. L., Chang, J. F., Chang, L. C., Chang, Y., Chen, H. S., Chen, Q. Y., Chen, S. M., Chen, Y. X., Chen, Y., Cheng, J. -H., Cheng, J., Cheng, Y. P., Cheng, Z. K., Cherwinka, J. J., Chu, M. C., Chukanov, A., Cummings, J. P., de Arcos, J., Deng, Z. Y., Ding, X. F., Ding, Y. Y., Diwan, M. V., Dolgareva, M., Dove, J., Dwyer, D. A., Edwards, W. R., Gill, R., Gonchar, M., Gong, G. H., Gong, H., Grassi, M., Gu, W. Q., Guan, M. Y., Guo, L., Guo, R. P., Guo, X. H., Guo, Z., Hackenburg, R. W., Han, R., Hans, S., He, M., Heeger, K. M., Heng, Y. K., Higuera, A., Hor, Y. K., Hsiung, Y. B., Hu, B. Z., Hu, T., Hu, W., Huang, E. C., Huang, H. X., Huang, X. T., Huber, P., Huo, W., Hussain, G., Jaffe, D. E., Jaffke, P., Jen, K. L., Jetter, S., Ji, X. P., Ji, X. L., Jiao, J. B., Johnson, R. A., Jones, D., Joshi, J., Kang, L., Kettell, S. H., Kohn, S., Kramer, M., Kwan, K. K., Kwok, M. W., Kwok, T., Langford, T. J., Lau, K., Lebanowski, L., Lee, J., Lee, J. H. C., Lei, R. T., Leitner, R., Li, C., Li, D. J., Li, F., Li, G. S., Li, Q. J., Li, S., Li, S. C., Li, W. D., Li, X. N., Li, Y. F., Li, Z. B., Liang, H., Lin, C. J., Lin, G. L., Lin, S., Lin, S. K., Lin, Y. -C., Ling, J. J., Link, J. M., Littenberg, L., Littlejohn, B. R., Liu, D. W., Liu, J. L., Liu, J. C., Loh, C. W., Lu, C., Lu, H. Q., Lu, J. S., Luk, K. B., Lv, Z., Ma, Q. M., Ma, X. Y., Ma, X. B., Ma, Y. Q., Malyshkin, Y., Martinez Caicedo, D. A., McDonald, K. T., McKeown, R. D., Mitchell, I., Mooney, M., Nakajima, Y., Napolitano, J., Naumov, D., Naumova, E., Ngai, H. Y., Ning, Z., Ochoa-Ricoux, J. P., Olshevskiy, A., Pan, H. -R., Park, J., Patton, S., Pec, V., Peng, J. C., Pinsky, L., Pun, C. S. J., Qi, F. Z., Qi, M., Qian, X., Raper, N., Ren, J., Rosero, R., Roskovec, B., Ruan, X. C., Steiner, H., Sun, G. X., Sun, J. L., Tang, W., Taychenachev, D., Treskov, K., Tsang, K. V., Tull, C. E., Viaux, N., Viren, B., Vorobel, V., Wang, C. H., Wang, M., Wang, N. Y., Wang, R. G., Wang, W., Wang, X., Wang, Y. F., Wang, Z., Wang, Z., Wang, Z. M., Wei, H. Y., Wen, L. J., Whisnant, K., White, C. G., Whitehead, L., Wise, T., Wong, H. L. H., Wong, S. C. F., Worcester, E., Wu, C. -H., Wu, Q., Wu, W. J., Xia, D. M., Xia, J. K., Xing, Z. Z., Xu, J. Y., Xu, J. L., Xu, Y., Xue, T., Yang, C. G., Yang, H., Yang, L., Yang, M. S., Yang, M. T., Ye, M., Ye, Z., Yeh, M., Young, B. L., Yu, Z. Y., Zeng, S., Zhan, L., Zhang, C., Zhang, H. H., Zhang, J. W., Zhang, Q. M., Zhang, X. T., Zhang, Y. M., Zhang, Y. X., Zhang, Y. M., Zhang, Z. J., Zhang, Z. Y., Zhang, Z. P., Zhao, J., Zhao, Q. W., Zhao, Y. B., Zhong, W. L., Zhou, L., Zhou, N., Zhuang, H. L., and Zou, J. H. Improved measurement of the reactor antineutrino flux and spectrum at Daya Bay. United States: N. p., 2017. Web. doi:10.1088/1674-1137/41/1/013002.
An, F. P., Balantekin, A. B., Band, H. R., Bishai, M., Blyth, S., Cao, D., Cao, G. F., Cao, J., Cen, W. R., Chan, Y. L., Chang, J. F., Chang, L. C., Chang, Y., Chen, H. S., Chen, Q. Y., Chen, S. M., Chen, Y. X., Chen, Y., Cheng, J. -H., Cheng, J., Cheng, Y. P., Cheng, Z. K., Cherwinka, J. J., Chu, M. C., Chukanov, A., Cummings, J. P., de Arcos, J., Deng, Z. Y., Ding, X. F., Ding, Y. Y., Diwan, M. V., Dolgareva, M., Dove, J., Dwyer, D. A., Edwards, W. R., Gill, R., Gonchar, M., Gong, G. H., Gong, H., Grassi, M., Gu, W. Q., Guan, M. Y., Guo, L., Guo, R. P., Guo, X. H., Guo, Z., Hackenburg, R. W., Han, R., Hans, S., He, M., Heeger, K. M., Heng, Y. K., Higuera, A., Hor, Y. K., Hsiung, Y. B., Hu, B. Z., Hu, T., Hu, W., Huang, E. C., Huang, H. X., Huang, X. T., Huber, P., Huo, W., Hussain, G., Jaffe, D. E., Jaffke, P., Jen, K. L., Jetter, S., Ji, X. P., Ji, X. L., Jiao, J. B., Johnson, R. A., Jones, D., Joshi, J., Kang, L., Kettell, S. H., Kohn, S., Kramer, M., Kwan, K. K., Kwok, M. W., Kwok, T., Langford, T. J., Lau, K., Lebanowski, L., Lee, J., Lee, J. H. C., Lei, R. T., Leitner, R., Li, C., Li, D. J., Li, F., Li, G. S., Li, Q. J., Li, S., Li, S. C., Li, W. D., Li, X. N., Li, Y. F., Li, Z. B., Liang, H., Lin, C. J., Lin, G. L., Lin, S., Lin, S. K., Lin, Y. -C., Ling, J. J., Link, J. M., Littenberg, L., Littlejohn, B. R., Liu, D. W., Liu, J. L., Liu, J. C., Loh, C. W., Lu, C., Lu, H. Q., Lu, J. S., Luk, K. B., Lv, Z., Ma, Q. M., Ma, X. Y., Ma, X. B., Ma, Y. Q., Malyshkin, Y., Martinez Caicedo, D. A., McDonald, K. T., McKeown, R. D., Mitchell, I., Mooney, M., Nakajima, Y., Napolitano, J., Naumov, D., Naumova, E., Ngai, H. Y., Ning, Z., Ochoa-Ricoux, J. P., Olshevskiy, A., Pan, H. -R., Park, J., Patton, S., Pec, V., Peng, J. C., Pinsky, L., Pun, C. S. J., Qi, F. Z., Qi, M., Qian, X., Raper, N., Ren, J., Rosero, R., Roskovec, B., Ruan, X. C., Steiner, H., Sun, G. X., Sun, J. L., Tang, W., Taychenachev, D., Treskov, K., Tsang, K. V., Tull, C. E., Viaux, N., Viren, B., Vorobel, V., Wang, C. H., Wang, M., Wang, N. Y., Wang, R. G., Wang, W., Wang, X., Wang, Y. F., Wang, Z., Wang, Z., Wang, Z. M., Wei, H. Y., Wen, L. J., Whisnant, K., White, C. G., Whitehead, L., Wise, T., Wong, H. L. H., Wong, S. C. F., Worcester, E., Wu, C. -H., Wu, Q., Wu, W. J., Xia, D. M., Xia, J. K., Xing, Z. Z., Xu, J. Y., Xu, J. L., Xu, Y., Xue, T., Yang, C. G., Yang, H., Yang, L., Yang, M. S., Yang, M. T., Ye, M., Ye, Z., Yeh, M., Young, B. L., Yu, Z. Y., Zeng, S., Zhan, L., Zhang, C., Zhang, H. H., Zhang, J. W., Zhang, Q. M., Zhang, X. T., Zhang, Y. M., Zhang, Y. X., Zhang, Y. M., Zhang, Z. J., Zhang, Z. Y., Zhang, Z. P., Zhao, J., Zhao, Q. W., Zhao, Y. B., Zhong, W. L., Zhou, L., Zhou, N., Zhuang, H. L., & Zou, J. H. Improved measurement of the reactor antineutrino flux and spectrum at Daya Bay. United States. https://doi.org/10.1088/1674-1137/41/1/013002
An, F. P., Balantekin, A. B., Band, H. R., Bishai, M., Blyth, S., Cao, D., Cao, G. F., Cao, J., Cen, W. R., Chan, Y. L., Chang, J. F., Chang, L. C., Chang, Y., Chen, H. S., Chen, Q. Y., Chen, S. M., Chen, Y. X., Chen, Y., Cheng, J. -H., Cheng, J., Cheng, Y. P., Cheng, Z. K., Cherwinka, J. J., Chu, M. C., Chukanov, A., Cummings, J. P., de Arcos, J., Deng, Z. Y., Ding, X. F., Ding, Y. Y., Diwan, M. V., Dolgareva, M., Dove, J., Dwyer, D. A., Edwards, W. R., Gill, R., Gonchar, M., Gong, G. H., Gong, H., Grassi, M., Gu, W. Q., Guan, M. Y., Guo, L., Guo, R. P., Guo, X. H., Guo, Z., Hackenburg, R. W., Han, R., Hans, S., He, M., Heeger, K. M., Heng, Y. K., Higuera, A., Hor, Y. K., Hsiung, Y. B., Hu, B. Z., Hu, T., Hu, W., Huang, E. C., Huang, H. X., Huang, X. T., Huber, P., Huo, W., Hussain, G., Jaffe, D. E., Jaffke, P., Jen, K. L., Jetter, S., Ji, X. P., Ji, X. L., Jiao, J. B., Johnson, R. A., Jones, D., Joshi, J., Kang, L., Kettell, S. H., Kohn, S., Kramer, M., Kwan, K. K., Kwok, M. W., Kwok, T., Langford, T. J., Lau, K., Lebanowski, L., Lee, J., Lee, J. H. C., Lei, R. T., Leitner, R., Li, C., Li, D. J., Li, F., Li, G. S., Li, Q. J., Li, S., Li, S. C., Li, W. D., Li, X. N., Li, Y. F., Li, Z. B., Liang, H., Lin, C. J., Lin, G. L., Lin, S., Lin, S. K., Lin, Y. -C., Ling, J. J., Link, J. M., Littenberg, L., Littlejohn, B. R., Liu, D. W., Liu, J. L., Liu, J. C., Loh, C. W., Lu, C., Lu, H. Q., Lu, J. S., Luk, K. B., Lv, Z., Ma, Q. M., Ma, X. Y., Ma, X. B., Ma, Y. Q., Malyshkin, Y., Martinez Caicedo, D. A., McDonald, K. T., McKeown, R. D., Mitchell, I., Mooney, M., Nakajima, Y., Napolitano, J., Naumov, D., Naumova, E., Ngai, H. Y., Ning, Z., Ochoa-Ricoux, J. P., Olshevskiy, A., Pan, H. -R., Park, J., Patton, S., Pec, V., Peng, J. C., Pinsky, L., Pun, C. S. J., Qi, F. Z., Qi, M., Qian, X., Raper, N., Ren, J., Rosero, R., Roskovec, B., Ruan, X. C., Steiner, H., Sun, G. X., Sun, J. L., Tang, W., Taychenachev, D., Treskov, K., Tsang, K. V., Tull, C. E., Viaux, N., Viren, B., Vorobel, V., Wang, C. H., Wang, M., Wang, N. Y., Wang, R. G., Wang, W., Wang, X., Wang, Y. F., Wang, Z., Wang, Z., Wang, Z. M., Wei, H. Y., Wen, L. J., Whisnant, K., White, C. G., Whitehead, L., Wise, T., Wong, H. L. H., Wong, S. C. F., Worcester, E., Wu, C. -H., Wu, Q., Wu, W. J., Xia, D. M., Xia, J. K., Xing, Z. Z., Xu, J. Y., Xu, J. L., Xu, Y., Xue, T., Yang, C. G., Yang, H., Yang, L., Yang, M. S., Yang, M. T., Ye, M., Ye, Z., Yeh, M., Young, B. L., Yu, Z. Y., Zeng, S., Zhan, L., Zhang, C., Zhang, H. H., Zhang, J. W., Zhang, Q. M., Zhang, X. T., Zhang, Y. M., Zhang, Y. X., Zhang, Y. M., Zhang, Z. J., Zhang, Z. Y., Zhang, Z. P., Zhao, J., Zhao, Q. W., Zhao, Y. B., Zhong, W. L., Zhou, L., Zhou, N., Zhuang, H. L., and Zou, J. H. Sun . "Improved measurement of the reactor antineutrino flux and spectrum at Daya Bay". United States. https://doi.org/10.1088/1674-1137/41/1/013002. https://www.osti.gov/servlets/purl/1341712.
@article{osti_1341712,
title = {Improved measurement of the reactor antineutrino flux and spectrum at Daya Bay},
author = {An, F. P. and Balantekin, A. B. and Band, H. R. and Bishai, M. and Blyth, S. and Cao, D. and Cao, G. F. and Cao, J. and Cen, W. R. and Chan, Y. L. and Chang, J. F. and Chang, L. C. and Chang, Y. and Chen, H. S. and Chen, Q. Y. and Chen, S. M. and Chen, Y. X. and Chen, Y. and Cheng, J. -H. and Cheng, J. and Cheng, Y. P. and Cheng, Z. K. and Cherwinka, J. J. and Chu, M. C. and Chukanov, A. and Cummings, J. P. and de Arcos, J. and Deng, Z. Y. and Ding, X. F. and Ding, Y. Y. and Diwan, M. V. and Dolgareva, M. and Dove, J. and Dwyer, D. A. and Edwards, W. R. and Gill, R. and Gonchar, M. and Gong, G. H. and Gong, H. and Grassi, M. and Gu, W. Q. and Guan, M. Y. and Guo, L. and Guo, R. P. and Guo, X. H. and Guo, Z. and Hackenburg, R. W. and Han, R. and Hans, S. and He, M. and Heeger, K. M. and Heng, Y. K. and Higuera, A. and Hor, Y. K. and Hsiung, Y. B. and Hu, B. Z. and Hu, T. and Hu, W. and Huang, E. C. and Huang, H. X. and Huang, X. T. and Huber, P. and Huo, W. and Hussain, G. and Jaffe, D. E. and Jaffke, P. and Jen, K. L. and Jetter, S. and Ji, X. P. and Ji, X. L. and Jiao, J. B. and Johnson, R. A. and Jones, D. and Joshi, J. and Kang, L. and Kettell, S. H. and Kohn, S. and Kramer, M. and Kwan, K. K. and Kwok, M. W. and Kwok, T. and Langford, T. J. and Lau, K. and Lebanowski, L. and Lee, J. and Lee, J. H. C. and Lei, R. T. and Leitner, R. and Li, C. and Li, D. J. and Li, F. and Li, G. S. and Li, Q. J. and Li, S. and Li, S. C. and Li, W. D. and Li, X. N. and Li, Y. F. and Li, Z. B. and Liang, H. and Lin, C. J. and Lin, G. L. and Lin, S. and Lin, S. K. and Lin, Y. -C. and Ling, J. J. and Link, J. M. and Littenberg, L. and Littlejohn, B. R. and Liu, D. W. and Liu, J. L. and Liu, J. C. and Loh, C. W. and Lu, C. and Lu, H. Q. and Lu, J. S. and Luk, K. B. and Lv, Z. and Ma, Q. M. and Ma, X. Y. and Ma, X. B. and Ma, Y. Q. and Malyshkin, Y. and Martinez Caicedo, D. A. and McDonald, K. T. and McKeown, R. D. and Mitchell, I. and Mooney, M. and Nakajima, Y. and Napolitano, J. and Naumov, D. and Naumova, E. and Ngai, H. Y. and Ning, Z. and Ochoa-Ricoux, J. P. and Olshevskiy, A. and Pan, H. -R. and Park, J. and Patton, S. and Pec, V. and Peng, J. C. and Pinsky, L. and Pun, C. S. J. and Qi, F. Z. and Qi, M. and Qian, X. and Raper, N. and Ren, J. and Rosero, R. and Roskovec, B. and Ruan, X. C. and Steiner, H. and Sun, G. X. and Sun, J. L. and Tang, W. and Taychenachev, D. and Treskov, K. and Tsang, K. V. and Tull, C. E. and Viaux, N. and Viren, B. and Vorobel, V. and Wang, C. H. and Wang, M. and Wang, N. Y. and Wang, R. G. and Wang, W. and Wang, X. and Wang, Y. F. and Wang, Z. and Wang, Z. and Wang, Z. M. and Wei, H. Y. and Wen, L. J. and Whisnant, K. and White, C. G. and Whitehead, L. and Wise, T. and Wong, H. L. H. and Wong, S. C. F. and Worcester, E. and Wu, C. -H. and Wu, Q. and Wu, W. J. and Xia, D. M. and Xia, J. K. and Xing, Z. Z. and Xu, J. Y. and Xu, J. L. and Xu, Y. and Xue, T. and Yang, C. G. and Yang, H. and Yang, L. and Yang, M. S. and Yang, M. T. and Ye, M. and Ye, Z. and Yeh, M. and Young, B. L. and Yu, Z. Y. and Zeng, S. and Zhan, L. and Zhang, C. and Zhang, H. H. and Zhang, J. W. and Zhang, Q. M. and Zhang, X. T. and Zhang, Y. M. and Zhang, Y. X. and Zhang, Y. M. and Zhang, Z. J. and Zhang, Z. Y. and Zhang, Z. P. and Zhao, J. and Zhao, Q. W. and Zhao, Y. B. and Zhong, W. L. and Zhou, L. and Zhou, N. and Zhuang, H. L. and Zou, J. H.},
abstractNote = {© Article funded by SCOAP3 and published under licence by Chinese Physical Society and the Institute of High Energy Physics of the Chinese Academy of Sciences and the Institute of Modern Physics of the Chinese Academy of Sciences and IOP Publishing Ltd. A new measurement of the reactor antineutrino flux and energy spectrum by the Daya Bay reactor neutrino experiment is reported. The antineutrinos were generated by six 2.9 GW th nuclear reactors and detected by eight antineutrino detectors deployed in two near (560 m and 600 m flux-weighted baselines) and one far (1640 m flux-weighted baseline) underground experimental halls. With 621 days of data, more than 1.2 million inverse beta decay (IBD) candidates were detected. The IBD yield in the eight detectors was measured, and the ratio of measured to predicted flux was found to be 0.946±0.020 (0.992±0.021) for the Huber+Mueller (ILL+Vogel) model. A 2.9σ deviation was found in the measured IBD positron energy spectrum compared to the predictions. In particular, an excess of events in the region of 4-6 MeV was found in the measured spectrum, with a local significance of 4.4σ. A reactor antineutrino spectrum weighted by the IBD cross section is extracted for model-independent predictions.},
doi = {10.1088/1674-1137/41/1/013002},
journal = {Chinese Physics C, High Energy Physics and Nuclear Physics},
number = 1,
volume = 41,
place = {United States},
year = {Sun Jan 01 00:00:00 EST 2017},
month = {Sun Jan 01 00:00:00 EST 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 105 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Detection of the Free Neutrino: a Confirmation
journal, July 1956


Initial results from the CHOOZ long baseline reactor neutrino oscillation experiment
journal, February 1998


Search for neutrino oscillations on a long base-line at the CHOOZ nuclear power station
journal, April 2003


Search for Neutrino Oscillations at the Palo Verde Nuclear Reactors
journal, April 2000


First Results from KamLAND: Evidence for Reactor Antineutrino Disappearance
journal, January 2003


Observation of Electron-Antineutrino Disappearance at Daya Bay
journal, April 2012


Evidence of electron neutrino appearance in a muon neutrino beam
journal, August 2013


Electron Neutrino and Antineutrino Appearance in the Full MINOS Data Sample
journal, April 2013


Indication of Reactor ν ¯ e Disappearance in the Double Chooz Experiment
journal, March 2012


Observation of Reactor Electron Antineutrinos Disappearance in the RENO Experiment
journal, May 2012


New results from RENO and prospects with RENO-50
journal, August 2015


Determination of the antineutrino spectrum from 235U thermal neutron fission products up to 9.5 MeV
journal, October 1985


Experimental beta-spectra from 239Pu and 235U thermal neutron fission products and their correlated antineutrino spectra
journal, December 1982


Antineutrino spectra from 241Pu and 239Pu thermal neutron fission products
journal, February 1989


Reactor antineutrino spectra and their application to antineutrino-induced reactions. II
journal, October 1981


Reactor-based neutrino oscillation experiments
journal, March 2002


Improved predictions of reactor antineutrino spectra
journal, May 2011


Determination of antineutrino spectra from nuclear reactors
journal, August 2011


Reactor antineutrino anomaly
journal, April 2011


Systematic Uncertainties in the Analysis of the Reactor Neutrino Anomaly
journal, May 2014


Measurement of the Reactor Antineutrino Flux and Spectrum at Daya Bay
journal, February 2016


The detector system of the Daya Bay reactor neutrino experiment
journal, March 2016

  • An, F. P.; Bai, J. Z.; Balantekin, A. B.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 811
  • DOI: 10.1016/j.nima.2015.11.144

Determining Reactor Neutrino Flux
journal, August 2012


Apollo2 year 2010
journal, October 2010

  • Sanchez, Richard; Zmijarevi, Igor; Coste-Delclaux, M.
  • Nuclear Engineering and Technology, Vol. 42, Issue 5
  • DOI: 10.5516/NET.2010.42.5.474

Reactor simulation for antineutrino experiments using DRAGON and MURE
journal, July 2012


Spectral Structure of Electron Antineutrinos from Nuclear Reactors
journal, January 2015


Experimental Determination of the Antineutrino Spectrum of the Fission Products of U 238
journal, March 2014


Reactor as a source of antineutrinos: Thermal fission energy
journal, October 2004

  • Kopeikin, V. I.; Mikaelyan, L. A.; Sinev, V. V.
  • Physics of Atomic Nuclei, Vol. 67, Issue 10
  • DOI: 10.1134/1.1811196

Improved calculation of the energy release in neutron-induced fission
journal, July 2013


Angular distribution of neutron inverse beta decay, ν ¯ e + p e + + n
journal, July 1999


Systematic impact of spent nuclear fuel on θ 13 sensitivity at reactor neutrino experiment
journal, August 2009


A study of antineutrino spectra from spent nuclear fuel at Daya Bay
journal, January 2012


Neutron Capture and the Antineutrino Yield from Nuclear Reactors
journal, March 2016


Automated calibration system for a high-precision measurement of neutrino mixing angle θ13 with the Daya Bay antineutrino detectors
journal, June 2014

  • Liu, J.; Cai, B.; Carr, R.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 750
  • DOI: 10.1016/j.nima.2014.02.049

A side-by-side comparison of Daya Bay antineutrino detectors
journal, September 2012

  • An, F. P.; An, Q.; Bai, J. Z.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 685
  • DOI: 10.1016/j.nima.2012.05.030

Geant4—a simulation toolkit
journal, July 2003

  • Agostinelli, S.; Allison, J.; Amako, K.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 506, Issue 3
  • DOI: 10.1016/S0168-9002(03)01368-8

Limits on neutrino oscillations from the CHOOZ experiment
journal, November 1999


Final results from the Palo Verde neutrino oscillation experiment
journal, November 2001


Spectral Measurement of Electron Antineutrino Oscillation Amplitude and Frequency at Daya Bay
journal, February 2014


Gamma-calibration of NE 213 scintillation counters
journal, March 1982


Nuclear structure insights into reactor antineutrino spectra
journal, January 2015


SVD approach to data unfolding
journal, April 1996

  • Höcker, Andreas; Kartvelishvili, Vakhtang
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 372, Issue 3
  • DOI: 10.1016/0168-9002(95)01478-0

Evidence of Electron Neutrino Appearance in a Muon Neutrino Beam
text, January 2013

  • Kreslo, Igor; Ariga, Tomoko; Ariga, Akitaka
  • American Physical Society
  • DOI: 10.7892/boris.58457

First Results from KamLAND: Evidence for Reactor Antineutrino Disappearance
text, January 2003

  • H., Cohn,; M., Markoff, D.; L., de Braeckeleer,
  • The University of North Carolina at Chapel Hill University Libraries
  • DOI: 10.17615/h43t-0346

Determining Reactor Neutrino Flux
text, January 2011


Electron neutrino and antineutrino appearance in the full MINOS data sample
text, January 2013


Spectral Structure of Electron Antineutrinos from Nuclear Reactors
text, January 2014


A new measurement of antineutrino oscillation with the full detector configuration at Daya Bay
text, January 2015


Measurement of the Reactor Antineutrino Flux and Spectrum at Daya Bay
text, January 2015


Neutron capture and the antineutrino yield from nuclear reactors
text, January 2015


Reactor-based Neutrino Oscillation Experiments
text, January 2001


Reactor as a Source of Antineutrinos: Thermal Fission Energy
text, January 2004


Works referencing / citing this record:

Updated global 3+1 analysis of short-baseline neutrino oscillations
journal, June 2017

  • Gariazzo, S.; Giunti, C.; Laveder, M.
  • Journal of High Energy Physics, Vol. 2017, Issue 6
  • DOI: 10.1007/jhep06(2017)135

Reactor fuel fraction information on the antineutrino anomaly
journal, October 2017

  • Giunti, C.; Ji, X. P.; Laveder, M.
  • Journal of High Energy Physics, Vol. 2017, Issue 10
  • DOI: 10.1007/jhep10(2017)143

Employing antineutrino detectors to safeguard future nuclear reactors from diversions
journal, August 2019

  • Stewart, Christopher; Abou-Jaoude, Abdalla; Erickson, Anna
  • Nature Communications, Vol. 10, Issue 1
  • DOI: 10.1038/s41467-019-11434-z

The STEREO experiment
journal, July 2018


Prospects for improved understanding of isotopic reactor antineutrino fluxes
journal, January 2018


Sterile Neutrino Constraints from the STEREO Experiment with 66 Days of Reactor-On Data
journal, October 2018


Neutrino Oscillation Analysis of 217 Live Days of Daya Bay and 500 Live Days of RENO
journal, January 2020

  • Acero, Mario A.; Aguilar-Arevalo, Alexis A.; Polo-Toledo, Dairo J.
  • Advances in High Energy Physics, Vol. 2020
  • DOI: 10.1155/2020/8526034

Light sterile neutrinos: a critical overview
journal, January 2019


Sterile neutrino search at NEOS Experiment
text, January 2016


Global constraints on absolute neutrino masses and their ordering
text, January 2017


Evolution of the Reactor Antineutrino Flux and Spectrum at Daya Bay
text, January 2017


Impact of Fission Neutron Energies on Reactor Antineutrino Spectra
text, January 2018


The STEREO Experiment
text, January 2018


Sterile Neutrino Constraints from the STEREO Experiment with 66 days of Reactor-on Data
text, January 2018


Neutrino oscillation analysis of 217 live-days of Daya Bay and 500 live-days of RENO
text, January 2019


Employing antineutrino detectors to safeguard future nuclear reactors from diversions
journal, August 2019

  • Stewart, Christopher; Abou-Jaoude, Abdalla; Erickson, Anna
  • Nature Communications, Vol. 10, Issue 1
  • DOI: 10.1038/s41467-019-11434-z