skip to main content

DOE PAGESDOE PAGES

Title: Conversion of Nuclear Waste to Molten Glass: Cold-Cap Reactions in Crucible Tests

The feed-to-glass conversion, which comprises complex chemical reactions and phase transitions, occurs in the cold cap during nuclear waste vitrification. Here, to investigate the conversion process, we analyzed heat-treated samples of a simulated high-level waste feed using X-ray diffraction, electron probe microanalysis, leaching tests, and residual anion analysis. Feed dehydration, gas evolution, and borate phase formation occurred at temperatures below 700°C before the emerging glass-forming melt was completely connected. Above 700°C, intermediate aluminosilicate phases and quartz particles gradually dissolved in the continuous borosilicate melt, which expanded with transient foam. Finally, knowledge of the chemistry and physics of feed-to-glass conversion will help us control the conversion path by changing the melter feed makeup to maximize the glass production rate.
Authors:
ORCiD logo [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [2]
  1. Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
  2. U.S. Department of Energy, Office of River Protection, Richland, WA (United States)
Publication Date:
Report Number(s):
PNNL-SA-115889
Journal ID: ISSN 0002-7820
Grant/Contract Number:
AC05-76RL01830
Type:
Accepted Manuscript
Journal Name:
Journal of the American Ceramic Society
Additional Journal Information:
Journal Volume: 99; Journal Issue: 9; Journal ID: ISSN 0002-7820
Publisher:
American Ceramic Society
Research Org:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Org:
USDOE
Country of Publication:
United States
Language:
English
Subject:
12 MANAGEMENT OF RADIOACTIVE AND NON-RADIOACTIVE WASTES FROM NUCLEAR FACILITIES; nuclear waste; glass; reaction path
OSTI Identifier:
1341439