DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Connecting the irreversible capacity loss in Li-ion batteries with the electronic insulating properties of solid electrolyte interphase (SEI) components.

Abstract

The formation and continuous growth of a solid electrolyte interphase (SEI) layer are responsible for the irreversible capacity loss of batteries in the initial and subsequent cycles, respectively. In this article, the electron tunneling barriers from Li metal through three insulating SEI components, namely Li2CO3, LiF and Li3PO4, are computed by density function theory (DFT) approaches. Based on electron tunneling theory, it is estimated that sufficient to block electron tunneling. It is also found that the band gap decreases under tension while the work function remains the same, and thus the tunneling barrier decreases under tension and increases under compression. A new parameter, η, characterizing the average distances between anions, is proposed to unify the variation of band gap with strain under different loading conditions into a single linear function of η. An analytical model based on the tunneling results is developed to connect the irreversible capacity loss, due to the Li ions consumed in forming these SEI component layers on the surface of negative electrodes. As a result, the agreement between the model predictions and experimental results suggests that only the initial irreversible capacity loss is due to the self-limiting electron tunneling property of the SEI.

Authors:
 [1];  [2];  [3];  [3];  [4];  [2]
  1. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
  2. Michigan State Univ., East Lansing, MI (United States)
  3. Penn State Univ., University Park, PA (United States)
  4. General Motors Research and Development Center, Warren, MI (United States)
Publication Date:
Research Org.:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Energy Frontier Research Centers (EFRC) (United States). Nanostructures for Electrical Energy Storage (NEES)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA); USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1240017
Alternate Identifier(s):
OSTI ID: 1341180
Report Number(s):
SAND2016-0102J
Journal ID: ISSN 0378-7753; 617600
Grant/Contract Number:  
AC04-94AL85000; SC0001160; CMMI-1235092
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Power Sources
Additional Journal Information:
Journal Volume: 309; Journal Issue: C; Journal ID: ISSN 0378-7753
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE

Citation Formats

Leung, Kevin, Lin, Yu -Xiao, Liu, Zhe, Chen, Long -Qing, Lu, Peng, and Qi, Yue. Connecting the irreversible capacity loss in Li-ion batteries with the electronic insulating properties of solid electrolyte interphase (SEI) components.. United States: N. p., 2016. Web. doi:10.1016/j.jpowsour.2016.01.078.
Leung, Kevin, Lin, Yu -Xiao, Liu, Zhe, Chen, Long -Qing, Lu, Peng, & Qi, Yue. Connecting the irreversible capacity loss in Li-ion batteries with the electronic insulating properties of solid electrolyte interphase (SEI) components.. United States. https://doi.org/10.1016/j.jpowsour.2016.01.078
Leung, Kevin, Lin, Yu -Xiao, Liu, Zhe, Chen, Long -Qing, Lu, Peng, and Qi, Yue. Fri . "Connecting the irreversible capacity loss in Li-ion batteries with the electronic insulating properties of solid electrolyte interphase (SEI) components.". United States. https://doi.org/10.1016/j.jpowsour.2016.01.078. https://www.osti.gov/servlets/purl/1240017.
@article{osti_1240017,
title = {Connecting the irreversible capacity loss in Li-ion batteries with the electronic insulating properties of solid electrolyte interphase (SEI) components.},
author = {Leung, Kevin and Lin, Yu -Xiao and Liu, Zhe and Chen, Long -Qing and Lu, Peng and Qi, Yue},
abstractNote = {The formation and continuous growth of a solid electrolyte interphase (SEI) layer are responsible for the irreversible capacity loss of batteries in the initial and subsequent cycles, respectively. In this article, the electron tunneling barriers from Li metal through three insulating SEI components, namely Li2CO3, LiF and Li3PO4, are computed by density function theory (DFT) approaches. Based on electron tunneling theory, it is estimated that sufficient to block electron tunneling. It is also found that the band gap decreases under tension while the work function remains the same, and thus the tunneling barrier decreases under tension and increases under compression. A new parameter, η, characterizing the average distances between anions, is proposed to unify the variation of band gap with strain under different loading conditions into a single linear function of η. An analytical model based on the tunneling results is developed to connect the irreversible capacity loss, due to the Li ions consumed in forming these SEI component layers on the surface of negative electrodes. As a result, the agreement between the model predictions and experimental results suggests that only the initial irreversible capacity loss is due to the self-limiting electron tunneling property of the SEI.},
doi = {10.1016/j.jpowsour.2016.01.078},
journal = {Journal of Power Sources},
number = C,
volume = 309,
place = {United States},
year = {Fri Feb 05 00:00:00 EST 2016},
month = {Fri Feb 05 00:00:00 EST 2016}
}

Journal Article:

Citation Metrics:
Cited by: 160 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Recent development of carbon materials for Li ion batteries
journal, January 2000


Lithium Batteries and Cathode Materials
journal, October 2004

  • Whittingham, M. Stanley
  • Chemical Reviews, Vol. 104, Issue 10, p. 4271-4302
  • DOI: 10.1021/cr020731c

Insertion Electrode Materials for Rechargeable Lithium Batteries
journal, July 1998


A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries
journal, September 2010


SEI film formation on highly crystalline graphitic materials in lithium-ion batteries
journal, February 2006


Graphite and carbon powders for electrochemical applications
journal, June 2006


Structured Silicon Anodes for Lithium Battery Applications
journal, January 2003

  • Green, Mino; Fielder, Elizabeth; Scrosati, Bruno
  • Electrochemical and Solid-State Letters, Vol. 6, Issue 5, p. A75-A79
  • DOI: 10.1149/1.1563094

Electrochemical behaviors of silicon based anode material
journal, February 2006


Improved stability of nano-Sn electrode with high-quality nano-SEI formation for lithium ion battery
journal, March 2015


Generalized Formula for the Electric Tunnel Effect between Similar Electrodes Separated by a Thin Insulating Film
journal, June 1963

  • Simmons, John G.
  • Journal of Applied Physics, Vol. 34, Issue 6
  • DOI: 10.1063/1.1702682

Modeling the SEI-Formation on Graphite Electrodes in LiFePO 4 Batteries
journal, January 2015

  • Li, Dongjiang; Danilov, Dmitry; Zhang, Zhongru
  • Journal of The Electrochemical Society, Vol. 162, Issue 6
  • DOI: 10.1149/2.0161506jes

Electronic Structure Modeling of Electrochemical Reactions at Electrode/Electrolyte Interfaces in Lithium Ion Batteries
journal, December 2012

  • Leung, Kevin
  • The Journal of Physical Chemistry C, Vol. 117, Issue 4
  • DOI: 10.1021/jp308929a

Using Atomic Layer Deposition to Hinder Solvent Decomposition in Lithium Ion Batteries: First-Principles Modeling and Experimental Studies
journal, September 2011

  • Leung, Kevin; Qi, Yue; Zavadil, Kevin R.
  • Journal of the American Chemical Society, Vol. 133, Issue 37
  • DOI: 10.1021/ja205119g

The Au(111)/Electrolyte Interface: A Tunnel-Spectroscopic and DFT Investigation
journal, November 2007

  • Simeone, Felice C.; Kolb, Dieter M.; Venkatachalam, Sudha
  • Angewandte Chemie International Edition, Vol. 46, Issue 46
  • DOI: 10.1002/anie.200702868

Tunneling behavior of electrified interfaces
journal, April 2008


Theoretical Modeling of Tunneling Barriers in Carbon-Based Molecular Electronic Junctions
journal, May 2015

  • Kondratenko, Mykola; Stoyanov, Stanislav R.; Gusarov, Sergey
  • The Journal of Physical Chemistry C, Vol. 119, Issue 21
  • DOI: 10.1021/jp5128332

Electronic structure calculations of metal-nanotube contacts with or without oxygen adsorption
journal, July 2005


Schottky barriers at hexagonal boron nitride/metal interfaces: A first-principles study
journal, August 2014


Density-functional theory of nonequilibrium tunneling
journal, October 2008


Understanding Solid Electrolyte Interface Film Formation on Graphite Electrodes
journal, January 2001

  • Zhang, Shengshui; Ding, Michael S.; Xu, Kang
  • Electrochemical and Solid-State Letters, Vol. 4, Issue 12
  • DOI: 10.1149/1.1414946

A Mathematical Model for the Lithium-Ion Negative Electrode Solid Electrolyte Interphase
journal, January 2004

  • Christensen, John; Newman, John
  • Journal of The Electrochemical Society, Vol. 151, Issue 11
  • DOI: 10.1149/1.1804812

Lithium transport within the solid electrolyte interphase
journal, October 2011


Direct Calculation of Li-Ion Transport in the Solid Electrolyte Interphase
journal, September 2012

  • Shi, Siqi; Lu, Peng; Liu, Zhongyi
  • Journal of the American Chemical Society, Vol. 134, Issue 37
  • DOI: 10.1021/ja305366r

Improvement of cycling stability of Si anode by mechanochemcial reduction and carbon coating
journal, April 2009


Si nanotubes ALD coated with TiO 2 , TiN or Al 2 O 3 as high performance lithium ion battery anodes
journal, January 2014

  • Lotfabad, Elmira Memarzadeh; Kalisvaart, Peter; Kohandehghan, Alireza
  • J. Mater. Chem. A, Vol. 2, Issue 8
  • DOI: 10.1039/C3TA14302C

Electrode-Electrolyte Interface for Solid State Li-Ion Batteries: Point Defects and Mechanical Strain
journal, January 2014

  • Kc, Santosh; Longo, Roberto C.; Xiong, Ka
  • Journal of The Electrochemical Society, Vol. 161, Issue 11
  • DOI: 10.1149/2.0151411jes

Structures, Li + mobilities, and interfacial properties of solid electrolytes Li 3 PS 4 and Li 3 PO 4 from first principles
journal, September 2013


Mechanisms of Li + diffusion in crystalline γ - and β Li 3 P O 4 electrolytes from first principles
journal, November 2007


Determination of mechanical properties of the SEI in sodium ion batteries via colloidal probe microscopy
journal, September 2013


Mechanical Properties of LiF and LiCl Crystals Under High Pressure
journal, January 1993


The influence of OH−-ions on the mechanical properties in LiF and NaCl single crystals
journal, January 1984

  • Lubenets, S. V.; Ostapchuk, E. I.; Soifer, L. M.
  • Crystal Research and Technology, Vol. 19, Issue 3
  • DOI: 10.1002/crat.2170190311

Property Evolution of Al 2 O 3 Coated and Uncoated Si Electrodes: A First Principles Investigation
journal, January 2014

  • Kim, Sung-Yup; Qi, Yue
  • Journal of The Electrochemical Society, Vol. 161, Issue 11
  • DOI: 10.1149/2.0301414jes

Ultralow load indentation hardness and modulus of K – and α–Al 2 O 3 CVD coatings
journal, July 1994

  • Söderlund, E.; Reineck, I.; Rowcliffe, D. J.
  • Journal of Materials Research, Vol. 9, Issue 7
  • DOI: 10.1557/JMR.1994.1683

Defect Thermodynamics and Diffusion Mechanisms in Li 2 CO 3 and Implications for the Solid Electrolyte Interphase in Li-Ion Batteries
journal, March 2013

  • Shi, Siqi; Qi, Yue; Li, Hong
  • The Journal of Physical Chemistry C, Vol. 117, Issue 17
  • DOI: 10.1021/jp310591u

All-Solid Lithium Electrodes with Mixed-Conductor Matrix
journal, January 1981

  • Boukamp, B. A.
  • Journal of The Electrochemical Society, Vol. 128, Issue 4
  • DOI: 10.1149/1.2127495

Battery Cycle Life Prediction with Coupled Chemical Degradation and Fatigue Mechanics
journal, January 2012

  • Deshpande, Rutooj; Verbrugge, Mark; Cheng, Yang-Tse
  • Journal of The Electrochemical Society, Vol. 159, Issue 10
  • DOI: 10.1149/2.049210jes

Stress and Strain-Energy Distributions within Diffusion-Controlled Insertion-Electrode Particles Subjected to Periodic Potential Excitations
journal, January 2009

  • Verbrugge, Mark W.; Cheng, Yang-Tse
  • Journal of The Electrochemical Society, Vol. 156, Issue 11
  • DOI: 10.1149/1.3205485

Stable cycling of double-walled silicon nanotube battery anodes through solid–electrolyte interphase control
journal, March 2012

  • Wu, Hui; Chan, Gerentt; Choi, Jang Wook
  • Nature Nanotechnology, Vol. 7, Issue 5
  • DOI: 10.1038/nnano.2012.35

A Beaded-String Silicon Anode
journal, February 2013

  • Sun, Chuan-Fu; Karki, Khim; Jia, Zheng
  • ACS Nano, Vol. 7, Issue 3
  • DOI: 10.1021/nn4001512

The Origin of Stress in the Solid Electrolyte Interphase on Carbon Electrodes for Li Ion Batteries
journal, October 2013

  • Tokranov, A.; Sheldon, B. W.; Lu, P.
  • Journal of The Electrochemical Society, Vol. 161, Issue 1
  • DOI: 10.1149/2.009401jes

Failure and Stabilization Mechanisms of Graphite Electrodes
journal, March 1997

  • Aurbach, Doron; Levi, Mikhail D.; Levi, Elena
  • The Journal of Physical Chemistry B, Vol. 101, Issue 12
  • DOI: 10.1021/jp962815t

Fermi levels in electrolytes and the absolute scale of redox potentials
journal, August 1983

  • Gerischer, Heinz; Ekardt, Walter
  • Applied Physics Letters, Vol. 43, Issue 4
  • DOI: 10.1063/1.94356

The concept of Fermi level pinning at semiconductor/liquid junctions. Consequences for energy conversion efficiency and selection of useful solution redox couples in solar devices
journal, May 1980

  • Bard, Allen J.; Bocarsly, Andrew B.; Fan, Fu Ren F.
  • Journal of the American Chemical Society, Vol. 102, Issue 11
  • DOI: 10.1021/ja00531a001

Electronic structure of a metal-insulator interface: Towards a theory of nonreactive adhesion
journal, September 1991


Pressure-driven dome-shaped superconductivity and electronic structural evolution in tungsten ditelluride
journal, July 2015

  • Pan, Xing-Chen; Chen, Xuliang; Liu, Huimei
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms8805

The structure and properties of metal-semiconductor interfaces
journal, November 1982


Formation of an electric dipole at metal-semiconductor interfaces
journal, November 2001


Effects of atomic scale roughness at metal/insulator interfaces on metal work function
journal, January 2013

  • Ling, Sanliang; Watkins, Matthew B.; Shluger, Alexander L.
  • Physical Chemistry Chemical Physics, Vol. 15, Issue 45
  • DOI: 10.1039/c3cp53590h

Interfacial Study on Solid Electrolyte Interphase at Li Metal Anode: Implication for Li Dendrite Growth
journal, January 2016

  • Liu, Z.; Qi, Y.; Lin, Y. X.
  • Journal of The Electrochemical Society, Vol. 163, Issue 3
  • DOI: 10.1149/2.0151605jes

Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

Size-dependent band gap of colloidal quantum dots
journal, January 2006

  • Baskoutas, Sotirios; Terzis, Andreas F.
  • Journal of Applied Physics, Vol. 99, Issue 1
  • DOI: 10.1063/1.2158502

Indirect to direct band gap transition in ultra-thin silicon films
journal, January 2013

  • Lin, Linhan; Li, Zhengcao; Feng, Jiayou
  • Physical Chemistry Chemical Physics, Vol. 15, Issue 16
  • DOI: 10.1039/c3cp50429h

First-principles calculations for work function and surface energy of thin lithium films
journal, March 1996


Impact of the cathode metal work function on the performance of vacuum-deposited organic light emitting-devices
journal, April 1999

  • Stössel, M.; Staudigel, J.; Steuber, F.
  • Applied Physics A: Materials Science & Processing, Vol. 68, Issue 4
  • DOI: 10.1007/s003390050910

Materials Design and Discovery with High-Throughput Density Functional Theory: The Open Quantum Materials Database (OQMD)
journal, September 2013


Comparative studies of the electronic structure of LiFePO4, FePO4, Li3PO4, LiMnPO4, LiCoPO4, and LiNiPO4
journal, June 2004

  • Xu, Yong-Nian; Ching, W. Y.; Chiang, Yet-Ming
  • Journal of Applied Physics, Vol. 95, Issue 11
  • DOI: 10.1063/1.1667422

Ground- and excited-state properties of LiF in the local-density formalism
journal, September 1977


Size dependence of band gaps in silicon nanostructures
journal, October 1995

  • Delley, B.; Steigmeier, E. F.
  • Applied Physics Letters, Vol. 67, Issue 16
  • DOI: 10.1063/1.114348

First-principles study on the structural, elastic, and electronic properties of γ-LiAlO2
journal, July 2009


An efficient method of DFT/LDA band-gap correction
journal, December 2013


Energy Band Structure of Lithium Fluoride Crystals by the Method of Tight Binding
journal, October 1971


Thermoreflectance of LiF between 12 and 30 eV
journal, June 1976


Electronic spectrum of crystalline lithium fluoride
journal, August 1967


A Hybrid Method for the Efficient Calculation of the Band Structure of 3-D Metallic Crystals
journal, March 2004

  • Silveirinha, M. G.; Fernandes, C. A.
  • IEEE Transactions on Microwave Theory and Techniques, Vol. 52, Issue 3
  • DOI: 10.1109/TMTT.2004.823563

Accurate Band Gaps of Semiconductors and Insulators with a Semilocal Exchange-Correlation Potential
journal, June 2009


Determining the band gap and mean kinetic energy of atoms from reflection electron energy loss spectra
journal, September 2015

  • Vos, M.; Marmitt, G. G.; Finkelstein, Y.
  • The Journal of Chemical Physics, Vol. 143, Issue 10
  • DOI: 10.1063/1.4929911

On the metallization of the LiF monolayer
journal, September 1994


First-principles calculations of perovskite thin films
journal, April 2002

  • Eglitis, R. I.; Heifets, E.; Kotomin, E. A.
  • Materials Science in Semiconductor Processing, Vol. 5, Issue 2-3
  • DOI: 10.1016/S1369-8001(02)00093-8

The importance of the active surface area of graphite materials in the first lithium intercalation
journal, December 2007


On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries
journal, September 1999


EIS study on the formation of solid electrolyte interface in Li-ion battery
journal, January 2006


Solubility of Lithium Salts Formed on the Lithium-Ion Battery Negative Electrode Surface in Organic Solvents
journal, January 2009

  • Tasaki, Ken; Goldberg, Alex; Lian, Jian-Jie
  • Journal of The Electrochemical Society, Vol. 156, Issue 12
  • DOI: 10.1149/1.3239850

Works referencing / citing this record:

“All‐In‐One” integrated ultrathin SnS 2 @3D multichannel carbon matrix power high‐areal–capacity lithium battery anode
journal, October 2019

  • Xu, Hongyi; Peng, Chengxin; Yan, Yuhua
  • Carbon Energy, Vol. 1, Issue 2
  • DOI: 10.1002/cey2.22

Anode Interface Engineering and Architecture Design for High‐Performance Lithium–Sulfur Batteries
journal, January 2019


The Challenge of Lithium Metal Anodes for Practical Applications
journal, April 2019


Mechanical and Electronic Stabilization of Solid Electrolyte Interphase with Sulfite Additive for Lithium Metal Batteries
journal, January 2019

  • Xu, Jiagang; Tian, Hong-Kang; Qi, Ji
  • Journal of The Electrochemical Society, Vol. 166, Issue 14
  • DOI: 10.1149/2.0331914jes

Current Li-Ion Battery Technologies in Electric Vehicles and Opportunities for Advancements
journal, March 2019

  • Miao, Yu; Hynan, Patrick; von Jouanne, Annette
  • Energies, Vol. 12, Issue 6
  • DOI: 10.3390/en12061074

High-Precision Coulometry Studies of the Impact of Temperature and Time on SEI Formation in Li-Ion Cells
journal, January 2018

  • Ellis, L. D.; Allen, J. P.; Hill, I. G.
  • Journal of The Electrochemical Society, Vol. 165, Issue 7
  • DOI: 10.1149/2.1091807jes

In situ surface protection for enhancing stability and performance of conversion-type cathodes
journal, January 2017

  • Wu, Feixiang; Borodin, Oleg; Yushin, Gleb
  • MRS Energy & Sustainability, Vol. 4
  • DOI: 10.1557/mre.2017.11

Understanding lithium transport in SEI films: a nonequilibrium molecular dynamics simulation
text, January 2020


Predicting High-Temperature Decomposition of Lithiated Graphite: Part II. Passivation Layer Evolution and the Role of Surface Area
journal, January 2018

  • Shurtz, Randy C.; Engerer, Jeffrey D.; Hewson, John C.
  • Journal of The Electrochemical Society, Vol. 165, Issue 16
  • DOI: 10.1149/2.0171814jes

Combinations of LiPO 2 F 2 and Other Electrolyte Additives in Li[Ni 0.5 Mn 0.3 Co 0.2 ]O 2 /Graphite Pouch Cells
journal, January 2018

  • Ma, Lin; Ellis, Leah; Glazier, S. L.
  • Journal of The Electrochemical Society, Vol. 165, Issue 9
  • DOI: 10.1149/2.0661809jes

Revealing SEI Morphology: In-Depth Analysis of a Modeling Approach
journal, January 2017

  • Single, Fabian; Horstmann, Birger; Latz, Arnulf
  • Journal of The Electrochemical Society, Vol. 164, Issue 11
  • DOI: 10.1149/2.0121711jes

Electrolytes and Electrolyte/Electrode Interfaces in Sodium‐Ion Batteries: From Scientific Research to Practical Application
journal, March 2019


In Situ Generation of Artificial Solid‐Electrolyte Interphases on 3D Conducting Scaffolds for High‐Performance Lithium‐Metal Anodes
journal, January 2020


Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries
journal, March 2018


Revealing SEI Morphology: In-Depth Analysis of a Modeling Approach
text, January 2017


Understanding lithium transport in SEI films: a nonequilibrium molecular dynamics simulation
journal, March 2020


Understanding lithium transport in SEI films: a nonequilibrium molecular dynamics simulation
text, January 2020