DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The Anode Challenge for Lithium‐Ion Batteries: A Mechanochemically Synthesized Sn–Fe–C Composite Anode Surpasses Graphitic Carbon

Abstract

Carbon-based anodes are the key limiting factor in increasing the volumetric capacity of lithium-ion batteries. Tin-based composites are one alternative approach. Nanosized Sn–Fe–C anode materials are mechanochemically synthesized by reducing SnO with Ti in the presence of carbon. The optimum synthesis conditions are found to be 1:0.25:10 for initial ratio of SnO, Ti, and graphite with a total grinding time of 8 h. This optimized composite shows excellent extended cycling at the C/10 rate, delivering a first charge capacity as high as 740 mAh g-1 and 60% of which still remained after 170 cycles. The calculated volumetric capacity significantly exceeds that of carbon. It also exhibits excellent rate capability, delivering volumetric capacity higher than 1.6 Ah cc-1 over 140 cycles at the 1 C rate.

Authors:
 [1];  [1];  [2];  [1];  [3];  [1];  [1];  [4]
  1. Materials Science and Engineering State University of New York at Binghamton Binghamton NY 13902‐6000 USA
  2. Department of Chemistry State University of New York at Binghamton Binghamton NY 13902‐6000 USA
  3. Materials Science and Engineering State University of New York at Binghamton Binghamton NY 13902‐6000 USA, Center for Functional Nanomaterials Brookhaven National Laboratory Upton NY 11973 USA
  4. Materials Science and Engineering State University of New York at Binghamton Binghamton NY 13902‐6000 USA, Department of Chemistry State University of New York at Binghamton Binghamton NY 13902‐6000 USA
Publication Date:
Research Org.:
State Univ. of New York, Binghamton, NY (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE); USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1341087
Alternate Identifier(s):
OSTI ID: 1310491; OSTI ID: 1401414; OSTI ID: 1429058
Grant/Contract Number:  
DE‐SC0012704; EE0006852; SC0012704; AC02-98CH10886
Resource Type:
Published Article
Journal Name:
Advanced Science
Additional Journal Information:
Journal Name: Advanced Science Journal Volume: 3 Journal Issue: 4; Journal ID: ISSN 2198-3844
Publisher:
Wiley Blackwell (John Wiley & Sons)
Country of Publication:
Germany
Language:
English
Subject:
25 ENERGY STORAGE

Citation Formats

Dong, Zhixin, Zhang, Ruibo, Ji, Dongsheng, Chernova, Natasha A., Karki, Khim, Sallis, Shawn, Piper, Louis, and Whittingham, M. Stanley. The Anode Challenge for Lithium‐Ion Batteries: A Mechanochemically Synthesized Sn–Fe–C Composite Anode Surpasses Graphitic Carbon. Germany: N. p., 2016. Web. doi:10.1002/advs.201500229.
Dong, Zhixin, Zhang, Ruibo, Ji, Dongsheng, Chernova, Natasha A., Karki, Khim, Sallis, Shawn, Piper, Louis, & Whittingham, M. Stanley. The Anode Challenge for Lithium‐Ion Batteries: A Mechanochemically Synthesized Sn–Fe–C Composite Anode Surpasses Graphitic Carbon. Germany. https://doi.org/10.1002/advs.201500229
Dong, Zhixin, Zhang, Ruibo, Ji, Dongsheng, Chernova, Natasha A., Karki, Khim, Sallis, Shawn, Piper, Louis, and Whittingham, M. Stanley. Thu . "The Anode Challenge for Lithium‐Ion Batteries: A Mechanochemically Synthesized Sn–Fe–C Composite Anode Surpasses Graphitic Carbon". Germany. https://doi.org/10.1002/advs.201500229.
@article{osti_1341087,
title = {The Anode Challenge for Lithium‐Ion Batteries: A Mechanochemically Synthesized Sn–Fe–C Composite Anode Surpasses Graphitic Carbon},
author = {Dong, Zhixin and Zhang, Ruibo and Ji, Dongsheng and Chernova, Natasha A. and Karki, Khim and Sallis, Shawn and Piper, Louis and Whittingham, M. Stanley},
abstractNote = {Carbon-based anodes are the key limiting factor in increasing the volumetric capacity of lithium-ion batteries. Tin-based composites are one alternative approach. Nanosized Sn–Fe–C anode materials are mechanochemically synthesized by reducing SnO with Ti in the presence of carbon. The optimum synthesis conditions are found to be 1:0.25:10 for initial ratio of SnO, Ti, and graphite with a total grinding time of 8 h. This optimized composite shows excellent extended cycling at the C/10 rate, delivering a first charge capacity as high as 740 mAh g-1 and 60% of which still remained after 170 cycles. The calculated volumetric capacity significantly exceeds that of carbon. It also exhibits excellent rate capability, delivering volumetric capacity higher than 1.6 Ah cc-1 over 140 cycles at the 1 C rate.},
doi = {10.1002/advs.201500229},
journal = {Advanced Science},
number = 4,
volume = 3,
place = {Germany},
year = {Thu Feb 04 00:00:00 EST 2016},
month = {Thu Feb 04 00:00:00 EST 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1002/advs.201500229

Citation Metrics:
Cited by: 28 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Mitigating the initial capacity loss (ICL) problem in high-capacity lithium ion battery anode materials
journal, January 2011

  • Ji, Ge; Ma, Yue; Lee, Jim Yang
  • Journal of Materials Chemistry, Vol. 21, Issue 27
  • DOI: 10.1039/c0jm03759a

Challenges for Rechargeable Li Batteries
journal, February 2010

  • Goodenough, John B.; Kim, Youngsik
  • Chemistry of Materials, Vol. 22, Issue 3, p. 587-603
  • DOI: 10.1021/cm901452z

Nanostructure Sn–Co–C composite lithium ion battery electrode with unique stability and high electrochemical performance
journal, March 2011


Nanostructured Sn–Ti–C composite anodes for lithium ion batteries
journal, March 2011


Nanospheres of a New Intermetallic FeSn 5 Phase: Synthesis, Magnetic Properties and Anode Performance in Li-ion Batteries
journal, July 2011

  • Wang, Xiao-Liang; Feygenson, Mikhail; Chen, Haiyan
  • Journal of the American Chemical Society, Vol. 133, Issue 29
  • DOI: 10.1021/ja202243j

Lithium Batteries and Cathode Materials
journal, October 2004

  • Whittingham, M. Stanley
  • Chemical Reviews, Vol. 104, Issue 10, p. 4271-4302
  • DOI: 10.1021/cr020731c

Nanostructured Sn–C Composite as an Advanced Anode Material in High-Performance Lithium-Ion Batteries
journal, September 2007

  • Derrien, G.; Hassoun, J.; Panero, S.
  • Advanced Materials, Vol. 19, Issue 17, p. 2336-2340
  • DOI: 10.1002/adma.200700748

Tin-Iron Based Nano-Materials as Anodes for Li-Ion Batteries
journal, January 2011

  • Zhang, Ruigang; Upreti, Shailesh; Stanley Whittingham, M.
  • Journal of The Electrochemical Society, Vol. 158, Issue 12
  • DOI: 10.1149/2.108112jes

EXPGUI , a graphical user interface for GSAS
journal, April 2001


Characterization of Amorphous and Crystalline Tin–Cobalt Anodes
journal, January 2007

  • Fan, Quan; Chupas, Peter J.; Whittingham, M. Stanley
  • Electrochemical and Solid-State Letters, Vol. 10, Issue 12, p. A274-A278
  • DOI: 10.1149/1.2789418

An In Situ Study of the Electrochemical Reaction of Li with Amorphous∕Nanostructured Cu6Sn5 + C
journal, January 2011

  • Thorne, J. S.; Dahn, J. R.; Obrovac, M. N.
  • Journal of The Electrochemical Society, Vol. 158, Issue 12
  • DOI: 10.1149/2.040112jes

An Sn–Fe/carbon nanocomposite as an alternative anode material for rechargeable lithium batteries
journal, April 2009


A review of the electrochemical performance of alloy anodes for lithium-ion batteries
journal, January 2011


Inorganic nanomaterials for batteries
journal, January 2008


Active/Inactive Nanocomposites as Anodes for Li-Ion Batteries
journal, January 1999

  • Mao, O.
  • Electrochemical and Solid-State Letters, Vol. 2, Issue 1
  • DOI: 10.1149/1.1390715

Amorphous CoSnO 3 @C nanoboxes with superior lithium storage capability
journal, January 2013

  • Wang, Zhiyu; Wang, Zichen; Liu, Wenting
  • Energy Environ. Sci., Vol. 6, Issue 1
  • DOI: 10.1039/C2EE23330D

Mechanically Alloyed Sn-Fe(-C) Powders as Anode Materials for Li-Ion Batteries: II. The Sn-Fe System
journal, September 1998

  • Mao, Ou; Dahn, J.R.
  • Journal of The Electrochemical Society, Vol. 146, Issue 2, p. 414-422
  • DOI: 10.1149/1.1391623

Mechanically Alloyed Sn-Fe(-C) Powders as Anode Materials for Li-Ion Batteries: I. The Sn[sub 2]Fe-C System
journal, January 1999

  • Mao, Ou
  • Journal of The Electrochemical Society, Vol. 146, Issue 2
  • DOI: 10.1149/1.1391622

Anodes for lithium batteries: tin revisited
journal, July 2003


Mechanically alloyed composite anode materials based on SiO–SnxFeyCz for Li-ion batteries
journal, January 2013

  • Liu, Bo; Abouimrane, Ali; Brown, Dennis E.
  • Journal of Materials Chemistry A, Vol. 1, Issue 13
  • DOI: 10.1039/c3ta00101f

One-pot formation of SnO2 hollow nanospheres and α-Fe2O3@SnO2 nanorattles with large void space and their lithium storage properties
journal, January 2009

  • Chen, Jun Song; Li, Chang Ming; Zhou, Wen Wen
  • Nanoscale, Vol. 1, Issue 2
  • DOI: 10.1039/b9nr00102f

The Scherrer Formula for X-Ray Particle Size Determination
journal, November 1939


Effect of Mechanical Grinding on the Lithium Intercalation Process in Graphites and Soft Carbons
journal, January 1996

  • Disma, F.
  • Journal of The Electrochemical Society, Vol. 143, Issue 12
  • DOI: 10.1149/1.1837322

Nanomaterials for Rechargeable Lithium Batteries
journal, April 2008

  • Bruce, Peter G.; Scrosati, Bruno; Tarascon, Jean-Marie
  • Angewandte Chemie International Edition, Vol. 47, Issue 16, p. 2930-2946
  • DOI: 10.1002/anie.200702505

Uniform Nano-Sn/C Composite Anodes for Lithium Ion Batteries
journal, January 2013

  • Xu, Yunhua; Liu, Qing; Zhu, Yujie
  • Nano Letters, Vol. 13, Issue 2
  • DOI: 10.1021/nl303823k

An In Situ Study of the Electrochemical Reaction of Li with Nanostructured Sn[sub 30]Co[sub 30]C[sub 40]
journal, January 2010

  • Ferguson, P. P.; Dunlap, R. A.; Dahn, J. R.
  • Journal of The Electrochemical Society, Vol. 157, Issue 3
  • DOI: 10.1149/1.3291850

History, Evolution, and Future Status of Energy Storage
journal, May 2012


Electrochemical evaluation of rutile TiO2 nanoparticles as negative electrode for Li-ion batteries
journal, December 2009


Single-Crystal Intermetallic M−Sn (M = Fe, Cu, Co, Ni) Nanospheres as Negative Electrodes for Lithium-Ion Batteries
journal, April 2010

  • Wang, Xiao-Liang; Han, Wei-Qiang; Chen, Jiajun
  • ACS Applied Materials & Interfaces, Vol. 2, Issue 5, p. 1548-1551
  • DOI: 10.1021/am100218v

Ultimate Limits to Intercalation Reactions for Lithium Batteries
journal, October 2014

  • Whittingham, M. Stanley
  • Chemical Reviews, Vol. 114, Issue 23
  • DOI: 10.1021/cr5003003

Electrochemical lithiation of tin and tin-based intermetallics and composites
journal, September 1999


Critical Size of a Nano SnO 2 Electrode for Li-Secondary Battery
journal, June 2005

  • Kim, Chunjoong; Noh, Mijung; Choi, Myungsuk
  • Chemistry of Materials, Vol. 17, Issue 12
  • DOI: 10.1021/cm048003o

Electrochemical Behavior of the Amorphous Tin–Cobalt Anode
journal, January 2010

  • Zhang, Ruigang; Whittingham, M. Stanley
  • Electrochemical and Solid-State Letters, Vol. 13, Issue 12
  • DOI: 10.1149/1.3496398

Novel synthesis of high performance anode materials for lithium-ion batteries (LIBs)
journal, January 2014


Interactions between disordered carbon and lithium in lithium ion rechargeable batteries
journal, January 1995