DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Developing one-dimensional implosions for inertial confinement fusion science

Abstract

Experiments on the National Ignition Facility show that multi-dimensional effects currently dominate the implosion performance. Low mode implosion symmetry and hydrodynamic instabilities seeded by capsule mounting features appear to be two key limiting factors for implosion performance. One reason these factors have a large impact on the performance of inertial confinement fusion implosions is the high convergence required to achieve high fusion gains. To tackle these problems, a predictable implosion platform is needed meaning experiments must trade-off high gain for performance. LANL has adopted three main approaches to develop a one-dimensional (1D) implosion platform where 1D means measured yield over the 1D clean calculation. A high adiabat, low convergence platform is being developed using beryllium capsules enabling larger case-to-capsule ratios to improve symmetry. The second approach is liquid fuel layers using wetted foam targets. With liquid fuel layers, the implosion convergence can be controlled via the initial vapor pressure set by the target fielding temperature. The last method is double shell targets. For double shells, the smaller inner shell houses the DT fuel and the convergence of this cavity is relatively small compared to hot spot ignition. However, double shell targets have a different set of trade-off versus advantages. Asmore » a result, details for each of these approaches are described.« less

Authors:
 [1]; ORCiD logo [1];  [1];  [1];  [1];  [1];  [1];  [1];  [2];  [2];  [2];  [2];  [2];  [2];  [2];  [1];  [1];  [1];  [1];  [1] more »;  [1];  [1];  [2];  [2];  [2];  [2];  [2];  [2];  [2];  [2];  [2];  [2];  [2];  [1];  [1]; ORCiD logo [1];  [1]; ORCiD logo [1] « less
  1. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  2. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Publication Date:
Research Org.:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA), Office of Defense Programs (DP)
OSTI Identifier:
1340972
Alternate Identifier(s):
OSTI ID: 1788345
Report Number(s):
LA-UR-16-23156; LLNL-JRNL-820667
Journal ID: ISSN 2095-4719
Grant/Contract Number:  
AC52-06NA25396; AC52-07NA27344
Resource Type:
Accepted Manuscript
Journal Name:
High Power Laser Science and Engineering
Additional Journal Information:
Journal Volume: 4; Journal ID: ISSN 2095-4719
Publisher:
Cambridge University Press
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; beryllium capsules; double shells; inertial confinement fusion; liquid layers

Citation Formats

Kline, John L., Yi, Sunghwan A., Simakov, Andrei Nikolaevich, Olson, Richard Edward, Wilson, Douglas Carl, Kyrala, George Amine, Perry, Theodore Sonne, Batha, Steven H., Dewald, Eddie L., Ralph, Joe E., Strozzi, David J., MacPhee, Andy G., Callahan, Debbie A., Hinkel, Denise, Hurricane, Omar A., Leeper, Ramon J., Zylstra, Alex B., Peterson, Robert Ross, Haines, Brian Michael, Yin, Lin, Bradley, Paul Andrew, Shah, Rahul C., Braun, Tom, Biener, Jorgan, Kozioziemski, Bernie J., Sater, Jim D., Biener, Monika M., Hamza, Alex V., Nikroo, Abbas, Berzak Hopkins, Laura F., Ho, Darwin, LePape, Sebastian, Meezan, Nathan B., Montgomery, David S., Daughton, William Scott, Merritt, Elizabeth Catherine, Cardenas, Tana, and Dodd, Evan S. Developing one-dimensional implosions for inertial confinement fusion science. United States: N. p., 2016. Web. doi:10.1017/hpl.2016.43.
Kline, John L., Yi, Sunghwan A., Simakov, Andrei Nikolaevich, Olson, Richard Edward, Wilson, Douglas Carl, Kyrala, George Amine, Perry, Theodore Sonne, Batha, Steven H., Dewald, Eddie L., Ralph, Joe E., Strozzi, David J., MacPhee, Andy G., Callahan, Debbie A., Hinkel, Denise, Hurricane, Omar A., Leeper, Ramon J., Zylstra, Alex B., Peterson, Robert Ross, Haines, Brian Michael, Yin, Lin, Bradley, Paul Andrew, Shah, Rahul C., Braun, Tom, Biener, Jorgan, Kozioziemski, Bernie J., Sater, Jim D., Biener, Monika M., Hamza, Alex V., Nikroo, Abbas, Berzak Hopkins, Laura F., Ho, Darwin, LePape, Sebastian, Meezan, Nathan B., Montgomery, David S., Daughton, William Scott, Merritt, Elizabeth Catherine, Cardenas, Tana, & Dodd, Evan S. Developing one-dimensional implosions for inertial confinement fusion science. United States. https://doi.org/10.1017/hpl.2016.43
Kline, John L., Yi, Sunghwan A., Simakov, Andrei Nikolaevich, Olson, Richard Edward, Wilson, Douglas Carl, Kyrala, George Amine, Perry, Theodore Sonne, Batha, Steven H., Dewald, Eddie L., Ralph, Joe E., Strozzi, David J., MacPhee, Andy G., Callahan, Debbie A., Hinkel, Denise, Hurricane, Omar A., Leeper, Ramon J., Zylstra, Alex B., Peterson, Robert Ross, Haines, Brian Michael, Yin, Lin, Bradley, Paul Andrew, Shah, Rahul C., Braun, Tom, Biener, Jorgan, Kozioziemski, Bernie J., Sater, Jim D., Biener, Monika M., Hamza, Alex V., Nikroo, Abbas, Berzak Hopkins, Laura F., Ho, Darwin, LePape, Sebastian, Meezan, Nathan B., Montgomery, David S., Daughton, William Scott, Merritt, Elizabeth Catherine, Cardenas, Tana, and Dodd, Evan S. Mon . "Developing one-dimensional implosions for inertial confinement fusion science". United States. https://doi.org/10.1017/hpl.2016.43. https://www.osti.gov/servlets/purl/1340972.
@article{osti_1340972,
title = {Developing one-dimensional implosions for inertial confinement fusion science},
author = {Kline, John L. and Yi, Sunghwan A. and Simakov, Andrei Nikolaevich and Olson, Richard Edward and Wilson, Douglas Carl and Kyrala, George Amine and Perry, Theodore Sonne and Batha, Steven H. and Dewald, Eddie L. and Ralph, Joe E. and Strozzi, David J. and MacPhee, Andy G. and Callahan, Debbie A. and Hinkel, Denise and Hurricane, Omar A. and Leeper, Ramon J. and Zylstra, Alex B. and Peterson, Robert Ross and Haines, Brian Michael and Yin, Lin and Bradley, Paul Andrew and Shah, Rahul C. and Braun, Tom and Biener, Jorgan and Kozioziemski, Bernie J. and Sater, Jim D. and Biener, Monika M. and Hamza, Alex V. and Nikroo, Abbas and Berzak Hopkins, Laura F. and Ho, Darwin and LePape, Sebastian and Meezan, Nathan B. and Montgomery, David S. and Daughton, William Scott and Merritt, Elizabeth Catherine and Cardenas, Tana and Dodd, Evan S.},
abstractNote = {Experiments on the National Ignition Facility show that multi-dimensional effects currently dominate the implosion performance. Low mode implosion symmetry and hydrodynamic instabilities seeded by capsule mounting features appear to be two key limiting factors for implosion performance. One reason these factors have a large impact on the performance of inertial confinement fusion implosions is the high convergence required to achieve high fusion gains. To tackle these problems, a predictable implosion platform is needed meaning experiments must trade-off high gain for performance. LANL has adopted three main approaches to develop a one-dimensional (1D) implosion platform where 1D means measured yield over the 1D clean calculation. A high adiabat, low convergence platform is being developed using beryllium capsules enabling larger case-to-capsule ratios to improve symmetry. The second approach is liquid fuel layers using wetted foam targets. With liquid fuel layers, the implosion convergence can be controlled via the initial vapor pressure set by the target fielding temperature. The last method is double shell targets. For double shells, the smaller inner shell houses the DT fuel and the convergence of this cavity is relatively small compared to hot spot ignition. However, double shell targets have a different set of trade-off versus advantages. As a result, details for each of these approaches are described.},
doi = {10.1017/hpl.2016.43},
journal = {High Power Laser Science and Engineering},
number = ,
volume = 4,
place = {United States},
year = {Mon Dec 12 00:00:00 EST 2016},
month = {Mon Dec 12 00:00:00 EST 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 5 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

NIF Capsule Design Update
journal, July 1997

  • Dittrich, T. R.; Haan, S. W.; Pollaine, S.
  • Fusion Technology, Vol. 31, Issue 4
  • DOI: 10.13182/FST97-A30792

First beryllium capsule implosions on the National Ignition Facility
journal, May 2016

  • Kline, J. L.; Yi, S. A.; Simakov, A. N.
  • Physics of Plasmas, Vol. 23, Issue 5
  • DOI: 10.1063/1.4948277

Tent-induced perturbations on areal density of implosions at the National Ignition Facilitya)
journal, May 2015

  • Tommasini, R.; Field, J. E.; Hammel, B. A.
  • Physics of Plasmas, Vol. 22, Issue 5
  • DOI: 10.1063/1.4921218

First High-Convergence Cryogenic Implosion in a Near-Vacuum Hohlraum
journal, April 2015


Experimental measurement of Au M-band flux in indirectly driven double-shell implosions
journal, July 2005

  • Robey, H. F.; Perry, T. S.; Park, H. -S.
  • Physics of Plasmas, Vol. 12, Issue 7
  • DOI: 10.1063/1.1927543

In Situ Real-Time Radiographic Study of Thin Film Formation Inside Rotating Hollow Spheres
journal, January 2016

  • Braun, Tom; Walton, Christopher C.; Dawedeit, Christoph
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 4
  • DOI: 10.1021/acsami.5b10357

Progress toward Ignition with Noncryogenic Double-Shell Capsules
journal, May 2000


Assembly of High-Areal-Density Deuterium-Tritium Fuel from Indirectly Driven Cryogenic Implosions
journal, May 2012


Detailed diagnosis of a double-shell collision under realistic implosion conditions
journal, May 2006

  • Kyrala, G. A.; Gunderson, M. A.; Delamater, N. D.
  • Physics of Plasmas, Vol. 13, Issue 5
  • DOI: 10.1063/1.2179047

The high-foot implosion campaign on the National Ignition Facility
journal, May 2014

  • Hurricane, O. A.; Callahan, D. A.; Casey, D. T.
  • Physics of Plasmas, Vol. 21, Issue 5
  • DOI: 10.1063/1.4874330

VISRAD—A 3-D view factor code and design tool for high-energy density physics experiments
journal, September 2003


Hohlraum-Driven Ignitionlike Double-Shell Implosions on the Omega Laser Facility
journal, February 2005


Design of a High-Foot High-Adiabat ICF Capsule for the National Ignition Facility
journal, February 2014


The velocity campaign for ignition on NIF
journal, May 2012

  • Callahan, D. A.; Meezan, N. B.; Glenzer, S. H.
  • Physics of Plasmas, Vol. 19, Issue 5
  • DOI: 10.1063/1.3694840

The development and advantages of beryllium capsules for the National Ignition Facility
journal, May 1998

  • Wilson, Douglas C.; Bradley, Paul A.; Hoffman, Nelson M.
  • Physics of Plasmas, Vol. 5, Issue 5
  • DOI: 10.1063/1.872865

A new approach to foam-lined indirect-drive NIF ignition targets
journal, April 2012


Multimode short-wavelength perturbation growth studies for the National Ignition Facility double-shell ignition target designs
journal, April 2004

  • Milovich, J. L.; Amendt, P.; Marinak, M.
  • Physics of Plasmas, Vol. 11, Issue 4
  • DOI: 10.1063/1.1646161

Assessing the prospects for achieving double-shell ignition on the National Ignition Facility using vacuum hohlraums
journal, May 2007

  • Amendt, Peter; Cerjan, C.; Hamza, A.
  • Physics of Plasmas, Vol. 14, Issue 5
  • DOI: 10.1063/1.2716406

Direct drive double shell target implosion hydrodynamics on OMEGA
journal, June 2005

  • Kyrala, George A.; Delamater, Norman; Wilson, Douglas
  • Laser and Particle Beams, Vol. 23, Issue 2
  • DOI: 10.1017/S0263034605050330

Three-dimensional HYDRA simulations of National Ignition Facility targets
journal, May 2001

  • Marinak, M. M.; Kerbel, G. D.; Gentile, N. A.
  • Physics of Plasmas, Vol. 8, Issue 5
  • DOI: 10.1063/1.1356740

Works referencing / citing this record:

Enhanced energy coupling for indirectly driven inertial confinement fusion
journal, October 2018