skip to main content


Title: Design and laser damage properties of a dichroic beam combiner coating for 22.5-deg incidence and S polarization with high transmission at 527 nm and high reflection at 1054 nm

We designed a dichroic beam combiner coating with 11 HfO 2/SiO 2 layer pairs and deposited it on a large substrate. It provides high transmission (HT) at 527 nm and high reflection (HR) at 1054 nm for a 22.5-deg angle of incidence (AOI), S polarization (Spol), and uses near half-wave layer thicknesses for HT at 527 nm, modified for HR at 1054 nm. The two options for the beam combiner each require that a high intensity beam be incident on the coating from within the substrate (from glass). We analyze the laser-induced damage threshold (LIDT) differences between the two options in terms of the 527- and 1054-nm E-field behaviors for air → coating and glass → coating incidences. This indicates that LIDTs should be higher for air → coating than for glass → coating incidence. LIDT tests at the use AOI, Spol with ns pulses at 532 and 1064 nm confirm this, with glass → coating LIDTs about half that of air → coating LIDTs. Lastly, these results clearly indicate that the best beam combiner option is for the high intensity 527 and 1054 nm beams to be incident on the coating from air and glass, respectively.
 [1] ;  [1] ;  [1] ;  [1] ;  [1]
  1. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Publication Date:
Report Number(s):
Journal ID: ISSN 0091-3286; 647550
Grant/Contract Number:
Accepted Manuscript
Journal Name:
Optical Engineering
Additional Journal Information:
Journal Volume: 56; Journal Issue: 1; Journal ID: ISSN 0091-3286
Research Org:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org:
USDOE National Nuclear Security Administration (NNSA)
Country of Publication:
United States
42 ENGINEERING; 36 MATERIALS SCIENCE; laser damage; dichroic optical coatings; laser beam combining coatings; coatings on large optics
OSTI Identifier: