skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: CO 2 Capture from Ambient Air by Crystallization with a Guanidine Sorbent

Abstract

Carbon capture and storage is an important strategy for stabilizing the increasing concentration of atmospheric CO 2 and the global temperature. A possible approach toward reversing this trend and decreasing the atmospheric CO 2 concentration is to remove the CO 2 directly from air (direct air capture). In this paper, we report a simple aqueous guanidine sorbent that captures CO 2 from ambient air and binds it as a crystalline carbonate salt by guanidinium hydrogen bonding. The resulting solid has very low aqueous solubility (K sp=1.0(4)×10 -8), which facilitates its separation from solution by filtration. The bound CO 2 can be released by relatively mild heating of the crystals at 80–120 °C, which regenerates the guanidine sorbent quantitatively. Finally and thus, this crystallization-based approach to CO 2 separation from air requires minimal energy and chemical input, and offers the prospect for low-cost direct air capture technologies.

Authors:
 [1];  [2];  [1];  [2];  [1];  [1]
  1. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Chemical Sciences Division
  2. (United States). Dept. of Chemistry
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
Contributing Org.:
Univ. of Tennessee, Knoxville, TN (United States); Univ. of Texas, Austin, TX (United States)
OSTI Identifier:
1340454
Grant/Contract Number:  
AC05-00OR22725
Resource Type:
Accepted Manuscript
Journal Name:
Angewandte Chemie (International Edition)
Additional Journal Information:
Journal Name: Angewandte Chemie (International Edition); Journal Volume: 56; Journal Issue: 4; Journal ID: ISSN 1433-7851
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; carbon capture; crystallization; guanidines; hydrogen bonding; sustainable chemistry

Citation Formats

Seipp, Charles A., Univ. of Texas, Austin, TX, Williams, Neil J., Univ. of Tennessee, Knoxville, TN, Kidder, Michelle K., and Custelcean, Radu. CO2 Capture from Ambient Air by Crystallization with a Guanidine Sorbent. United States: N. p., 2016. Web. doi:10.1002/anie.201610916.
Seipp, Charles A., Univ. of Texas, Austin, TX, Williams, Neil J., Univ. of Tennessee, Knoxville, TN, Kidder, Michelle K., & Custelcean, Radu. CO2 Capture from Ambient Air by Crystallization with a Guanidine Sorbent. United States. doi:10.1002/anie.201610916.
Seipp, Charles A., Univ. of Texas, Austin, TX, Williams, Neil J., Univ. of Tennessee, Knoxville, TN, Kidder, Michelle K., and Custelcean, Radu. Wed . "CO2 Capture from Ambient Air by Crystallization with a Guanidine Sorbent". United States. doi:10.1002/anie.201610916. https://www.osti.gov/servlets/purl/1340454.
@article{osti_1340454,
title = {CO2 Capture from Ambient Air by Crystallization with a Guanidine Sorbent},
author = {Seipp, Charles A. and Univ. of Texas, Austin, TX and Williams, Neil J. and Univ. of Tennessee, Knoxville, TN and Kidder, Michelle K. and Custelcean, Radu},
abstractNote = {Carbon capture and storage is an important strategy for stabilizing the increasing concentration of atmospheric CO2 and the global temperature. A possible approach toward reversing this trend and decreasing the atmospheric CO2 concentration is to remove the CO2 directly from air (direct air capture). In this paper, we report a simple aqueous guanidine sorbent that captures CO2 from ambient air and binds it as a crystalline carbonate salt by guanidinium hydrogen bonding. The resulting solid has very low aqueous solubility (Ksp=1.0(4)×10-8), which facilitates its separation from solution by filtration. The bound CO2 can be released by relatively mild heating of the crystals at 80–120 °C, which regenerates the guanidine sorbent quantitatively. Finally and thus, this crystallization-based approach to CO2 separation from air requires minimal energy and chemical input, and offers the prospect for low-cost direct air capture technologies.},
doi = {10.1002/anie.201610916},
journal = {Angewandte Chemie (International Edition)},
number = 4,
volume = 56,
place = {United States},
year = {2016},
month = {12}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 1 work
Citation information provided by
Web of Science

Figures / Tables:

Figure 1. Figure 1.: Atmospheric CO2 capture via crystalline PyBIGH2(CO3)(H2O)4. a) Reaction of aqueous PyBIG (ChemDraw structure on the left) with CO2 to form PyBIGH2(CO3)(H2O)4 (X-ray crystal structure on the right). b) Hydrogen-bonded [CO3(H2O)42–]n cluster formed in the crystal. c) CO32– binding site, with the anion accepting 4 water and 5 guanidiniummore » hydrogen bonds. d) Hydrogen bonding of the [CO3(H2O)42–]n cluster by the cationic stacks. e) Overlay of the experimental PXRD pattern of the bulk crystalline product (red) and the simulated PXRD pattern from the single-crystal X-ray data (blue).« less

Save / Share:

Works referenced in this record:

Application of Amine-Tethered Solid Sorbents for Direct CO 2 Capture from the Ambient Air
journal, March 2011

  • Choi, Sunho; Drese, Jeffrey H.; Eisenberger, Peter M.
  • Environmental Science & Technology, Vol. 45, Issue 6
  • DOI: 10.1021/es102797w

Carbon Dioxide Capture from the Air Using a Polyamine Based Regenerable Solid Adsorbent
journal, December 2011

  • Goeppert, Alain; Czaun, Miklos; May, Robert B.
  • Journal of the American Chemical Society, Vol. 133, Issue 50, p. 20164-20167
  • DOI: 10.1021/ja2100005

Learning through a portfolio of carbon capture and storage demonstration projects
journal, January 2016


Why Capture CO2 from the Atmosphere?
journal, September 2009


Seven chemical separations to change the world
journal, April 2016

  • Sholl, David S.; Lively, Ryan P.
  • Nature, Vol. 532, Issue 7600
  • DOI: 10.1038/532435a

Moisture-swing sorption for carbon dioxide capture from ambient air: a thermodynamic analysis
journal, January 2013

  • Wang, Tao; Lackner, Klaus S.; Wright, Allen B.
  • Phys. Chem. Chem. Phys., Vol. 15, Issue 2
  • DOI: 10.1039/C2CP43124F

The urgency of the development of CO2 capture from ambient air
journal, July 2012

  • Lackner, K. S.; Brennan, S.; Matter, J. M.
  • Proceedings of the National Academy of Sciences, Vol. 109, Issue 33
  • DOI: 10.1073/pnas.1108765109

Direct Air Capture of CO 2 by Physisorbent Materials
journal, October 2015

  • Kumar, Amrit; Madden, David G.; Lusi, Matteo
  • Angewandte Chemie, Vol. 127, Issue 48
  • DOI: 10.1002/ange.201506952

Aqueous Sulfate Separation by Crystallization of Sulfate-Water Clusters
journal, August 2015

  • Custelcean, Radu; Williams, Neil J.; Seipp, Charles A.
  • Angewandte Chemie, Vol. 127, Issue 36
  • DOI: 10.1002/ange.201506314

A Fine-Tuned Fluorinated MOF Addresses the Needs for Trace CO 2 Removal and Air Capture Using Physisorption
journal, July 2016

  • Bhatt, Prashant M.; Belmabkhout, Youssef; Cadiau, Amandine
  • Journal of the American Chemical Society, Vol. 138, Issue 29
  • DOI: 10.1021/jacs.6b05345

Capture CO 2 from Ambient Air Using Nanoconfined Ion Hydration
journal, February 2016

  • Shi, Xiaoyang; Xiao, Hang; Lackner, Klaus S.
  • Angewandte Chemie, Vol. 128, Issue 12
  • DOI: 10.1002/ange.201507846

Low-energy sodium hydroxide recovery for CO2 capture from atmospheric air—Thermodynamic analysis
journal, July 2009

  • Mahmoudkhani, Maryam; Keith, David W.
  • International Journal of Greenhouse Gas Control, Vol. 3, Issue 4
  • DOI: 10.1016/j.ijggc.2009.02.003

Post-combustion Capture of CO 2 : Results from the Solvent Absorption Capture Plant at Hazelwood Power Station Using Potassium Carbonate Solvent
journal, November 2011

  • Mumford, Kathryn A.; Smith, Kathryn H.; Anderson, Clare J.
  • Energy & Fuels, Vol. 26, Issue 1
  • DOI: 10.1021/ef201192n

Energy and Material Balance of CO 2 Capture from Ambient Air
journal, November 2007

  • Zeman, Frank
  • Environmental Science & Technology, Vol. 41, Issue 21
  • DOI: 10.1021/es070874m

Capture of Carbon Dioxide from Air and Flue Gas in the Alkylamine-Appended Metal–Organic Framework mmen-Mg2(dobpdc)
journal, April 2012

  • McDonald, Thomas M.; Lee, Woo Ram; Mason, Jarad A.
  • Journal of the American Chemical Society, Vol. 134, Issue 16, p. 7056-7065
  • DOI: 10.1021/ja300034j

Aqueous Sulfate Separation by Sequestration of [(SO 4 ) 2 (H 2 O) 4 ] 4− Clusters within Highly Insoluble Imine-Linked Bis-Guanidinium Crystals
journal, December 2015

  • Custelcean, Radu; Williams, Neil J.; Seipp, Charles A.
  • Chemistry - A European Journal, Vol. 22, Issue 6
  • DOI: 10.1002/chem.201504651

Moisture Swing Sorbent for Carbon Dioxide Capture from Ambient Air
journal, August 2011

  • Wang, Tao; Lackner, Klaus S.; Wright, Allen
  • Environmental Science & Technology, Vol. 45, Issue 15
  • DOI: 10.1021/es201180v

Amine-Based Nanofibrillated Cellulose As Adsorbent for CO 2 Capture from Air
journal, October 2011

  • Gebald, Christoph; Wurzbacher, Jan Andre; Tingaut, Philippe
  • Environmental Science & Technology, Vol. 45, Issue 20
  • DOI: 10.1021/es202223p

Towards the Experimental Decomposition Rate of Carbonic Acid (H2CO3) in Aqueous Solution
journal, January 2002


Amine-Tethered Solid Adsorbents Coupling High Adsorption Capacity and Regenerability for CO2 Capture From Ambient Air
journal, May 2011

  • Choi, Sunho; Gray, McMahan L.; Jones, Christopher W.
  • ChemSusChem, Vol. 4, Issue 5
  • DOI: 10.1002/cssc.201000355

Carbon Dioxide Capture from Atmospheric Air Using Sodium Hydroxide Spray
journal, April 2008

  • Stolaroff, Joshuah K.; Keith, David W.; Lowry, Gregory V.
  • Environmental Science & Technology, Vol. 42, Issue 8
  • DOI: 10.1021/es702607w

CO2 capture from atmospheric air via consecutive CaO-carbonation and CaCO3-calcination cycles in a fluidized-bed solar reactor
journal, February 2009


Direct Capture of CO2 from Ambient Air
journal, August 2016

  • Sanz-Pérez, Eloy S.; Murdock, Christopher R.; Didas, Stephanie A.
  • Chemical Reviews, Vol. 116, Issue 19, p. 11840-11876
  • DOI: 10.1021/acs.chemrev.6b00173

Process design and energy requirements for the capture of carbon dioxide from air
journal, December 2006

  • Baciocchi, Renato; Storti, Giuseppe; Mazzotti, Marco
  • Chemical Engineering and Processing: Process Intensification, Vol. 45, Issue 12, p. 1047-1058
  • DOI: 10.1016/j.cep.2006.03.015

Capture CO 2 from Ambient Air Using Nanoconfined Ion Hydration
journal, February 2016

  • Shi, Xiaoyang; Xiao, Hang; Lackner, Klaus S.
  • Angewandte Chemie International Edition, Vol. 55, Issue 12
  • DOI: 10.1002/anie.201507846

Direct Air Capture of CO 2 by Physisorbent Materials
journal, October 2015

  • Kumar, Amrit; Madden, David G.; Lusi, Matteo
  • Angewandte Chemie International Edition, Vol. 54, Issue 48
  • DOI: 10.1002/anie.201506952

Aqueous Sulfate Separation by Crystallization of Sulfate-Water Clusters
journal, August 2015

  • Custelcean, Radu; Williams, Neil J.; Seipp, Charles A.
  • Angewandte Chemie International Edition, Vol. 54, Issue 36
  • DOI: 10.1002/anie.201506314

A Guide to CO2 Sequestration
journal, June 2003


The urgency of the development of CO2 capture from ambient air
text, January 2012

  • Lackner, Klaus S.; Brennan, Sarah; Matter, Juerg M.
  • Columbia University
  • DOI: 10.7916/d8348w3g

    Works referencing / citing this record:

    CCDC 1509622: Experimental Crystal Structure Determination: IBISIY : N'',N'''''-(pyridine-2,6-diyldimethylylidene)dicarbonohydrazonic diamide hydrate
    dataset, October 2016


    Aqueous Sulfate Separation by Crystallization of Sulfate-Water Clusters
    journal, August 2015

    • Custelcean, Radu; Williams, Neil J.; Seipp, Charles A.
    • Angewandte Chemie, Vol. 127, Issue 36
    • DOI: 10.1002/ange.201506314

    Direct Air Capture of CO 2 by Physisorbent Materials
    journal, October 2015

    • Kumar, Amrit; Madden, David G.; Lusi, Matteo
    • Angewandte Chemie, Vol. 127, Issue 48
    • DOI: 10.1002/ange.201506952

    Capture CO 2 from Ambient Air Using Nanoconfined Ion Hydration
    journal, February 2016

    • Shi, Xiaoyang; Xiao, Hang; Lackner, Klaus S.
    • Angewandte Chemie, Vol. 128, Issue 12
    • DOI: 10.1002/ange.201507846

    Aqueous Sulfate Separation by Crystallization of Sulfate-Water Clusters
    journal, August 2015

    • Custelcean, Radu; Williams, Neil J.; Seipp, Charles A.
    • Angewandte Chemie International Edition, Vol. 54, Issue 36
    • DOI: 10.1002/anie.201506314

    Direct Air Capture of CO 2 by Physisorbent Materials
    journal, October 2015

    • Kumar, Amrit; Madden, David G.; Lusi, Matteo
    • Angewandte Chemie International Edition, Vol. 54, Issue 48
    • DOI: 10.1002/anie.201506952

    Capture CO 2 from Ambient Air Using Nanoconfined Ion Hydration
    journal, February 2016

    • Shi, Xiaoyang; Xiao, Hang; Lackner, Klaus S.
    • Angewandte Chemie International Edition, Vol. 55, Issue 12
    • DOI: 10.1002/anie.201507846

    Aqueous Sulfate Separation by Sequestration of [(SO 4 ) 2 (H 2 O) 4 ] 4− Clusters within Highly Insoluble Imine-Linked Bis-Guanidinium Crystals
    journal, December 2015

    • Custelcean, Radu; Williams, Neil J.; Seipp, Charles A.
    • Chemistry - A European Journal, Vol. 22, Issue 6
    • DOI: 10.1002/chem.201504651

    Molecular Tectonics: A Node‐and‐Linker Building Block Approach to a Family of Hydrogen‐Bonded Frameworks
    journal, July 2019

    • Boer, Stephanie A.; Morshedi, Mahbod; Tarzia, Andrew
    • Chemistry – A European Journal, Vol. 25, Issue 42
    • DOI: 10.1002/chem.201902117

    Amine-Tethered Solid Adsorbents Coupling High Adsorption Capacity and Regenerability for CO2 Capture From Ambient Air
    journal, May 2011

    • Choi, Sunho; Gray, McMahan L.; Jones, Christopher W.
    • ChemSusChem, Vol. 4, Issue 5
    • DOI: 10.1002/cssc.201000355

    CO2 capture from atmospheric air via consecutive CaO-carbonation and CaCO3-calcination cycles in a fluidized-bed solar reactor
    journal, February 2009


    Process design and energy requirements for the capture of carbon dioxide from air
    journal, December 2006

    • Baciocchi, Renato; Storti, Giuseppe; Mazzotti, Marco
    • Chemical Engineering and Processing: Process Intensification, Vol. 45, Issue 12, p. 1047-1058
    • DOI: 10.1016/j.cep.2006.03.015

    Low-energy sodium hydroxide recovery for CO2 capture from atmospheric air—Thermodynamic analysis
    journal, July 2009

    • Mahmoudkhani, Maryam; Keith, David W.
    • International Journal of Greenhouse Gas Control, Vol. 3, Issue 4
    • DOI: 10.1016/j.ijggc.2009.02.003

    Direct Capture of CO2 from Ambient Air
    journal, August 2016

    • Sanz-Pérez, Eloy S.; Murdock, Christopher R.; Didas, Stephanie A.
    • Chemical Reviews, Vol. 116, Issue 19, p. 11840-11876
    • DOI: 10.1021/acs.chemrev.6b00173

    Post-combustion Capture of CO 2 : Results from the Solvent Absorption Capture Plant at Hazelwood Power Station Using Potassium Carbonate Solvent
    journal, November 2011

    • Mumford, Kathryn A.; Smith, Kathryn H.; Anderson, Clare J.
    • Energy & Fuels, Vol. 26, Issue 1
    • DOI: 10.1021/ef201192n

    Energy and Material Balance of CO 2 Capture from Ambient Air
    journal, November 2007

    • Zeman, Frank
    • Environmental Science & Technology, Vol. 41, Issue 21
    • DOI: 10.1021/es070874m

    Application of Amine-Tethered Solid Sorbents for Direct CO 2 Capture from the Ambient Air
    journal, March 2011

    • Choi, Sunho; Drese, Jeffrey H.; Eisenberger, Peter M.
    • Environmental Science & Technology, Vol. 45, Issue 6
    • DOI: 10.1021/es102797w

    Moisture Swing Sorbent for Carbon Dioxide Capture from Ambient Air
    journal, August 2011

    • Wang, Tao; Lackner, Klaus S.; Wright, Allen
    • Environmental Science & Technology, Vol. 45, Issue 15
    • DOI: 10.1021/es201180v

    Amine-Based Nanofibrillated Cellulose As Adsorbent for CO 2 Capture from Air
    journal, October 2011

    • Gebald, Christoph; Wurzbacher, Jan Andre; Tingaut, Philippe
    • Environmental Science & Technology, Vol. 45, Issue 20
    • DOI: 10.1021/es202223p

    Carbon Dioxide Capture from Atmospheric Air Using Sodium Hydroxide Spray
    journal, April 2008

    • Stolaroff, Joshuah K.; Keith, David W.; Lowry, Gregory V.
    • Environmental Science & Technology, Vol. 42, Issue 8
    • DOI: 10.1021/es702607w

    Carbon Dioxide Capture from the Air Using a Polyamine Based Regenerable Solid Adsorbent
    journal, December 2011

    • Goeppert, Alain; Czaun, Miklos; May, Robert B.
    • Journal of the American Chemical Society, Vol. 133, Issue 50, p. 20164-20167
    • DOI: 10.1021/ja2100005

    Capture of Carbon Dioxide from Air and Flue Gas in the Alkylamine-Appended Metal–Organic Framework mmen-Mg2(dobpdc)
    journal, April 2012

    • McDonald, Thomas M.; Lee, Woo Ram; Mason, Jarad A.
    • Journal of the American Chemical Society, Vol. 134, Issue 16, p. 7056-7065
    • DOI: 10.1021/ja300034j

    A Fine-Tuned Fluorinated MOF Addresses the Needs for Trace CO 2 Removal and Air Capture Using Physisorption
    journal, July 2016

    • Bhatt, Prashant M.; Belmabkhout, Youssef; Cadiau, Amandine
    • Journal of the American Chemical Society, Vol. 138, Issue 29
    • DOI: 10.1021/jacs.6b05345

    Seven chemical separations to change the world
    journal, April 2016

    • Sholl, David S.; Lively, Ryan P.
    • Nature, Vol. 532, Issue 7600
    • DOI: 10.1038/532435a

    Learning through a portfolio of carbon capture and storage demonstration projects
    journal, January 2016


    Organocatalyzed carboxylative cyclization of propargylic amides with atmospheric CO 2 towards oxazolidine-2,4-diones
    journal, January 2019

    • Zhou, Hui; Mu, Sen; Ren, Bai-Hao
    • Green Chemistry, Vol. 21, Issue 5
    • DOI: 10.1039/c8gc03929a

    Transforming atmospheric CO 2 into alternative fuels: a metal-free approach under ambient conditions
    journal, January 2019

    • Chandra Sau, Samaresh; Bhattacharjee, Rameswar; Hota, Pradip Kumar
    • Chemical Science, Vol. 10, Issue 6
    • DOI: 10.1039/c8sc03581d

    A three dimensional hydrogen bonded organic framework assembled through antielectrostatic hydrogen bonds
    journal, January 2019

    • Cullen, Duncan A.; Gardiner, Michael G.; White, Nicholas G.
    • Chemical Communications, Vol. 55, Issue 80
    • DOI: 10.1039/c9cc06707h

    The urgency of the development of CO2 capture from ambient air
    journal, July 2012

    • Lackner, K. S.; Brennan, S.; Matter, J. M.
    • Proceedings of the National Academy of Sciences, Vol. 109, Issue 33
    • DOI: 10.1073/pnas.1108765109

    A Guide to CO2 Sequestration
    journal, June 2003


    Why Capture CO2 from the Atmosphere?
    journal, September 2009


    Molecular Tectonics: A Node‐and‐Linker Building Block Approach to a Family of Hydrogen‐Bonded Frameworks
    journal, July 2019

    • Boer, Stephanie A.; Morshedi, Mahbod; Tarzia, Andrew
    • Chemistry – A European Journal, Vol. 25, Issue 42
    • DOI: 10.1002/chem.201902117

    Organocatalyzed carboxylative cyclization of propargylic amides with atmospheric CO 2 towards oxazolidine-2,4-diones
    journal, January 2019

    • Zhou, Hui; Mu, Sen; Ren, Bai-Hao
    • Green Chemistry, Vol. 21, Issue 5
    • DOI: 10.1039/c8gc03929a

    Transforming atmospheric CO 2 into alternative fuels: a metal-free approach under ambient conditions
    journal, January 2019

    • Chandra Sau, Samaresh; Bhattacharjee, Rameswar; Hota, Pradip Kumar
    • Chemical Science, Vol. 10, Issue 6
    • DOI: 10.1039/c8sc03581d

    A three dimensional hydrogen bonded organic framework assembled through antielectrostatic hydrogen bonds
    journal, January 2019

    • Cullen, Duncan A.; Gardiner, Michael G.; White, Nicholas G.
    • Chemical Communications, Vol. 55, Issue 80
    • DOI: 10.1039/c9cc06707h

      Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.