skip to main content

DOE PAGESDOE PAGES

Title: Observation of Nanoscale Morphological and Structural Degradation in Perovskite Solar Cells by In-Situ TEM

The chemical stability of organometallic halide perovskites is a major barrier facing their application in the fast rising field of next generation photovoltaics. These materials were shown to undergo degradation due to the influence of heat or moisture, significantly limiting the lifetime of associated devices. To overcome this stability issue, a fundamental understanding of degradation mechanisms is of foremost importance. Here, high resolution in situ transmission electron microscopy and electron energy loss spectroscopy elemental mapping were applied to probe morphological and structural changes in perovskite films during controlled environmental exposure treatments. Both moisture and oxygen in ambient air are revealed to facilitate degradation in CH 3NH 3PbI 3 perovskites through decomposition and oxidation pathways, respectively. In addition, even in moisture- and oxygen-free environment evident degradation could be induced by heating at the solar cell s real-field operating temperature and the degradation was found to originate from defect sites. These findings provide fundamental insight to prevent degradation of perovskite materials and associated devices for realistic applications.
Authors:
 [1] ;  [1] ;  [2] ;  [1] ;  [1] ;  [3] ;  [1] ;  [3] ;  [1] ;  [1]
  1. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  2. (United States)
  3. Univ. of Tennessee, Knoxville, TN (United States)
Publication Date:
Grant/Contract Number:
AC05-00OR22725
Type:
Accepted Manuscript
Journal Name:
ACS Applied Materials and Interfaces
Additional Journal Information:
Journal Volume: 8; Journal Issue: 47; Journal ID: ISSN 1944-8244
Publisher:
American Chemical Society
Research Org:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS)
Sponsoring Org:
USDOE Office of Science (SC)
Country of Publication:
United States
Language:
English
Subject:
14 SOLAR ENERGY; 36 MATERIALS SCIENCE
OSTI Identifier:
1340439