skip to main content

DOE PAGESDOE PAGES

Title: Terasonic Excitations in 2D Gold Nanoparticle Arrays in a Water Matrix as Revealed by Atomistic Simulations

Here in this work we report on terahertz phononic excitations in 2D gold nanoparticle arrays in a water matrix through a series of large-scale molecular dynamics simulations. For the first time, we observe acoustic Dirac-like crossings in H (H 2O) atomic (molecular) networks which emerge due to an intraband phononic scattering. These crossings are the phononic fingerprints of ice-like arrangements of H (H 2O) atomic (molecular) networks at nanometer scale. We reveal how phononic excitations in metallic nanoparticles and the water matrix reciprocally impact on one another providing the mechanism for the THz phononics manipulation via structural engineering. In addition, we show that by tuning the arrangement of 2D gold nanoparticle assemblies the Au phononic polarizations experience sub-terahertz hybridization (Kohn anomaly) due to surface electron-phonon relaxation processes. This opens the way for the sound control and manipulation in soft matter metamaterials at nanoscale.
Authors:
 [1] ;  [1] ;  [2] ;  [1] ;  [1]
  1. Brookhaven National Lab. (BNL), Upton, NY (United States). National Synchrotron Light Source II (NSLS-II)
  2. Volgograd State Technical Univ., Volgograd (Russia)
Publication Date:
Report Number(s):
BNL-112690-2016-JA
Journal ID: ISSN 1932-7447
Grant/Contract Number:
SC0012704
Type:
Accepted Manuscript
Journal Name:
Journal of Physical Chemistry. C
Additional Journal Information:
Journal Volume: 120; Journal Issue: 35; Journal ID: ISSN 1932-7447
Publisher:
American Chemical Society
Research Org:
Brookhaven National Laboratory (BNL), Upton, NY (United States)
Sponsoring Org:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
Country of Publication:
United States
Language:
English
Subject:
77 NANOSCIENCE AND NANOTECHNOLOGY
OSTI Identifier:
1340395