DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Mesoporous Silica Nanoparticle-Supported Lipid Bilayers (Protocells) for Active Targeting and Delivery to Individual Leukemia Cells

Abstract

Many nanocarrier cancer therapeutics currently under development, as well as those used in the clinical setting, rely upon the enhanced permeability and retention (EPR) effect to passively accumulate in the tumor microenvironment and kill cancer cells. In leukemia, where leukemogenic stem cells and their progeny circulate within the peripheral blood or bone marrow, the EPR effect may not be operative. Thus, for leukemia therapeutics, it is essential to target and bind individual circulating cells. Here in this research, we investigate mesoporous silica nanoparticle (MSN)-supported lipid bilayers (protocells), an emerging class of nanocarriers, and establish the synthesis conditions and lipid bilayer composition needed to achieve highly monodisperse protocells that remain stable in complex media as assessed in vitro by dynamic light scattering and cryo-electron microscopy and ex ovo by direct imaging within a chick chorioallantoic membrane (CAM) model. We show that for vesicle fusion conditions where the lipid surface area exceeds the external surface area of the MSN and the ionic strength exceeds 20 mM, we form monosized protocells (polydispersity index <0.1) on MSN cores with varying size, shape, and pore size, whose conformal zwitterionic supported lipid bilayer confers excellent stability as judged by circulation in the CAM and minimal opsonizationmore » in vivo in a mouse model. Having established protocell formulations that are stable colloids, we further modified them with anti-EGFR antibodies as targeting agents and reverified their monodispersity and stability. Then, using intravital imaging in the CAM, we directly observed in real time the progression of selective targeting of individual leukemia cells (using the established REH leukemia cell line transduced with EGFR) and delivery of a model cargo. In conclusion, overall we have established the effectiveness of the protocell platform for individual cell targeting and delivery needed for leukemia and other disseminated disease.« less

Authors:
 [1];  [2];  [3];  [4];  [3];  [5];  [4];  [3];  [6];  [7];  [8];  [2];  [8];  [9]
  1. Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Chemical and Biological Engineering; Univ. of New Mexico, Albuquerque, NM (United States). Center for Micro-Engineered Materials, Advanced Materials Lab.
  2. Univ. of New Mexico, Albuquerque, NM (United States). Internal Medicine; Oncothyreon, Inc., Seattle, WA (United States)
  3. Univ. of New Mexico, Albuquerque, NM (United States). Center for Micro-Engineered Materials, Advanced Materials Lab.
  4. Univ. of New Mexico, Albuquerque, NM (United States). Health Sciences Center, Biochemistry and Molecular Biology
  5. Vanderbilt Univ., Nashville, TN (United States). Dept. of Biomolecular Engineering
  6. Sandia National Lab. (SNL-CA), Livermore, CA (United States). Advanced Materials Lab.
  7. Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Pathology; Univ. of New Mexico, Albuquerque, NM (United States). Comprehensive Cancer Center
  8. Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Pathology; Univ. of New Mexico, Albuquerque, NM (United States). Comprehensive Cancer Center
  9. Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Chemical and Biological Engineering; Univ. of New Mexico, Albuquerque, NM (United States). Center for Micro-Engineered Materials, Advanced Materials Lab.; Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Advanced Materials Lab.; Univ. of New Mexico, Albuquerque, NM (United States). Comprehensive Cancer Center
Publication Date:
Research Org.:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA); USDOE Office of Science (SC), Basic Energy Sciences (BES); National Institutes of Health (NIH); National Science Foundation (NSF); US Air Force Office of Scientific Research (AFOSR)
OSTI Identifier:
1340264
Report Number(s):
SAND-2016-12522J
Journal ID: ISSN 1936-0851; 649845
Grant/Contract Number:  
AC04-94AL85000; FA 9550-1-14-066; 1344298; DBI-1266377; UO1 CA151792-01
Resource Type:
Accepted Manuscript
Journal Name:
ACS Nano
Additional Journal Information:
Journal Volume: 10; Journal Issue: 9; Journal ID: ISSN 1936-0851
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; chorioallantoic membrane; colloidal stability; leukemia cell targeting; mesoporous silica nanoparticle; supported lipid bilayer

Citation Formats

Durfee, Paul N., Lin, Yu-Shen, Dunphy, Darren R., Muñiz, Ayşe J., Butler, Kimberly S., Humphrey, Kevin R., Lokke, Amanda J., Agola, Jacob O., Chou, Stanley S., Chen, I-Ming, Wharton, Walker, Townson, Jason L., Willman, Cheryl L., and Brinker, C. Jeffrey. Mesoporous Silica Nanoparticle-Supported Lipid Bilayers (Protocells) for Active Targeting and Delivery to Individual Leukemia Cells. United States: N. p., 2016. Web. doi:10.1021/acsnano.6b02819.
Durfee, Paul N., Lin, Yu-Shen, Dunphy, Darren R., Muñiz, Ayşe J., Butler, Kimberly S., Humphrey, Kevin R., Lokke, Amanda J., Agola, Jacob O., Chou, Stanley S., Chen, I-Ming, Wharton, Walker, Townson, Jason L., Willman, Cheryl L., & Brinker, C. Jeffrey. Mesoporous Silica Nanoparticle-Supported Lipid Bilayers (Protocells) for Active Targeting and Delivery to Individual Leukemia Cells. United States. https://doi.org/10.1021/acsnano.6b02819
Durfee, Paul N., Lin, Yu-Shen, Dunphy, Darren R., Muñiz, Ayşe J., Butler, Kimberly S., Humphrey, Kevin R., Lokke, Amanda J., Agola, Jacob O., Chou, Stanley S., Chen, I-Ming, Wharton, Walker, Townson, Jason L., Willman, Cheryl L., and Brinker, C. Jeffrey. Fri . "Mesoporous Silica Nanoparticle-Supported Lipid Bilayers (Protocells) for Active Targeting and Delivery to Individual Leukemia Cells". United States. https://doi.org/10.1021/acsnano.6b02819. https://www.osti.gov/servlets/purl/1340264.
@article{osti_1340264,
title = {Mesoporous Silica Nanoparticle-Supported Lipid Bilayers (Protocells) for Active Targeting and Delivery to Individual Leukemia Cells},
author = {Durfee, Paul N. and Lin, Yu-Shen and Dunphy, Darren R. and Muñiz, Ayşe J. and Butler, Kimberly S. and Humphrey, Kevin R. and Lokke, Amanda J. and Agola, Jacob O. and Chou, Stanley S. and Chen, I-Ming and Wharton, Walker and Townson, Jason L. and Willman, Cheryl L. and Brinker, C. Jeffrey},
abstractNote = {Many nanocarrier cancer therapeutics currently under development, as well as those used in the clinical setting, rely upon the enhanced permeability and retention (EPR) effect to passively accumulate in the tumor microenvironment and kill cancer cells. In leukemia, where leukemogenic stem cells and their progeny circulate within the peripheral blood or bone marrow, the EPR effect may not be operative. Thus, for leukemia therapeutics, it is essential to target and bind individual circulating cells. Here in this research, we investigate mesoporous silica nanoparticle (MSN)-supported lipid bilayers (protocells), an emerging class of nanocarriers, and establish the synthesis conditions and lipid bilayer composition needed to achieve highly monodisperse protocells that remain stable in complex media as assessed in vitro by dynamic light scattering and cryo-electron microscopy and ex ovo by direct imaging within a chick chorioallantoic membrane (CAM) model. We show that for vesicle fusion conditions where the lipid surface area exceeds the external surface area of the MSN and the ionic strength exceeds 20 mM, we form monosized protocells (polydispersity index <0.1) on MSN cores with varying size, shape, and pore size, whose conformal zwitterionic supported lipid bilayer confers excellent stability as judged by circulation in the CAM and minimal opsonization in vivo in a mouse model. Having established protocell formulations that are stable colloids, we further modified them with anti-EGFR antibodies as targeting agents and reverified their monodispersity and stability. Then, using intravital imaging in the CAM, we directly observed in real time the progression of selective targeting of individual leukemia cells (using the established REH leukemia cell line transduced with EGFR) and delivery of a model cargo. In conclusion, overall we have established the effectiveness of the protocell platform for individual cell targeting and delivery needed for leukemia and other disseminated disease.},
doi = {10.1021/acsnano.6b02819},
journal = {ACS Nano},
number = 9,
volume = 10,
place = {United States},
year = {Fri Jul 15 00:00:00 EDT 2016},
month = {Fri Jul 15 00:00:00 EDT 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 150 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Cancer nanotechnology: The impact of passive and active targeting in the era of modern cancer biology
journal, February 2014


Engineered Nanoparticles for Drug Delivery in Cancer Therapy
journal, October 2014

  • Sun, Tianmeng; Zhang, Yu Shrike; Pang, Bo
  • Angewandte Chemie International Edition
  • DOI: 10.1002/anie.201403036

Mesoporous Silica Nanoparticle Nanocarriers: Biofunctionality and Biocompatibility
journal, July 2012

  • Tarn, Derrick; Ashley, Carlee E.; Xue, Min
  • Accounts of Chemical Research, Vol. 46, Issue 3
  • DOI: 10.1021/ar3000986

Cancer cells compress intratumour vessels
journal, February 2004

  • Padera, Timothy P.; Stoll, Brian R.; Tooredman, Jessica B.
  • Nature, Vol. 427, Issue 6976
  • DOI: 10.1038/427695a

Normalization of tumour blood vessels improves the delivery of nanomedicines in a size-dependent manner
journal, April 2012

  • Chauhan, Vikash P.; Stylianopoulos, Triantafyllos; Martin, John D.
  • Nature Nanotechnology, Vol. 7, Issue 6
  • DOI: 10.1038/nnano.2012.45

Principles of nanoparticle design for overcoming biological barriers to drug delivery
journal, September 2015

  • Blanco, Elvin; Shen, Haifa; Ferrari, Mauro
  • Nature Biotechnology, Vol. 33, Issue 9
  • DOI: 10.1038/nbt.3330

Nanocarriers as an emerging platform for cancer therapy
journal, December 2007

  • Peer, Dan; Karp, Jeffrey M.; Hong, Seungpyo
  • Nature Nanotechnology, Vol. 2, Issue 12
  • DOI: 10.1038/nnano.2007.387

Impact of tumor-specific targeting on the biodistribution and efficacy of siRNA nanoparticles measured by multimodality in vivo imaging
journal, September 2007

  • Bartlett, D. W.; Su, H.; Hildebrandt, I. J.
  • Proceedings of the National Academy of Sciences, Vol. 104, Issue 39
  • DOI: 10.1073/pnas.0707461104

Drug targeting and tumor heterogeneity
journal, January 2009


Drug targeting to tumors: Principles, pitfalls and (pre-) clinical progress
journal, July 2012


Self-Assembled Targeted Nanoparticles: Evolution of Technologies and Bench to Bedside Translation
journal, October 2011

  • Shi, Jinjun; Xiao, Zeyu; Kamaly, Nazila
  • Accounts of Chemical Research, Vol. 44, Issue 10
  • DOI: 10.1021/ar200054n

Role of integrated cancer nanomedicine in overcoming drug resistance
journal, November 2013

  • Iyer, Arun K.; Singh, Amit; Ganta, Srinivas
  • Advanced Drug Delivery Reviews, Vol. 65, Issue 13-14
  • DOI: 10.1016/j.addr.2013.07.012

Nanomedicine therapeutic approaches to overcome cancer drug resistance
journal, November 2013

  • Markman, Janet L.; Rekechenetskiy, Arthur; Holler, Eggehard
  • Advanced Drug Delivery Reviews, Vol. 65, Issue 13-14
  • DOI: 10.1016/j.addr.2013.09.019

Improving the outcome for children with cancer: Development of targeted new agents: Improving the Outcome for Children With Cancer
journal, March 2015

  • Adamson, Peter C.
  • CA: A Cancer Journal for Clinicians, Vol. 65, Issue 3
  • DOI: 10.3322/caac.21273

Clinical Nanomedicine: A Solution to the Chemotherapy Conundrum in Pediatric Leukemia Therapy
journal, September 2013

  • Krishnan, V.; Rajasekaran, A. K.
  • Clinical Pharmacology & Therapeutics, Vol. 95, Issue 2
  • DOI: 10.1038/clpt.2013.174

Drug Delivery Systems: Entering the Mainstream
journal, March 2004


Clinical Application of Drug Delivery Systems in Cancer Chemotherapy: Review of the Efficacy and Side Effects of Approved Drugs
journal, January 2013


Nanoparticle delivery systems for cancer therapy: advances in clinical and preclinical research
journal, February 2012

  • Egusquiaguirre, Susana Patricia; Igartua, Manuela; Hernández, Rosa María
  • Clinical and Translational Oncology, Vol. 14, Issue 2
  • DOI: 10.1007/s12094-012-0766-6

New Developments in Liposomal Drug Delivery
journal, April 2015

  • Pattni, Bhushan S.; Chupin, Vladimir V.; Torchilin, Vladimir P.
  • Chemical Reviews, Vol. 115, Issue 19
  • DOI: 10.1021/acs.chemrev.5b00046

Nanoparticle therapeutics: an emerging treatment modality for cancer
journal, September 2008

  • Davis, Mark E.; Chen, Zhuo; Shin, Dong M.
  • Nature Reviews Drug Discovery, Vol. 7, Issue 9
  • DOI: 10.1038/nrd2614

Current trends in the use of liposomes for tumor targeting
journal, September 2013

  • Deshpande, Pranali P.; Biswas, Swati; Torchilin, Vladimir P.
  • Nanomedicine, Vol. 8, Issue 9
  • DOI: 10.2217/nnm.13.118

Impact of Nanotechnology on Drug Delivery
journal, December 2008

  • Farokhzad, Omid C.; Langer, Robert
  • ACS Nano, Vol. 3, Issue 1
  • DOI: 10.1021/nn900002m

Recent advances with liposomes as pharmaceutical carriers
journal, February 2005

  • Torchilin, Vladimir P.
  • Nature Reviews Drug Discovery, Vol. 4, Issue 2
  • DOI: 10.1038/nrd1632

HER2-targeted liposomal doxorubicin displays enhanced anti-tumorigenic effects without associated cardiotoxicity
journal, July 2012

  • Reynolds, Joseph G.; Geretti, Elena; Hendriks, Bart S.
  • Toxicology and Applied Pharmacology, Vol. 262, Issue 1
  • DOI: 10.1016/j.taap.2012.04.008

Design of polymeric nanoparticles for biomedical delivery applications
journal, January 2012

  • Elsabahy, Mahmoud; Wooley, Karen L.
  • Chemical Society Reviews, Vol. 41, Issue 7
  • DOI: 10.1039/c2cs15327k

Nanoparticle-Mediated Systemic Delivery of siRNA for Treatment of Cancers and Viral Infections
journal, January 2014

  • Draz, Mohamed Shehata; Fang, Binbin Amanda; Zhang, Pengfei
  • Theranostics, Vol. 4, Issue 9
  • DOI: 10.7150/thno.9404

Recent Advances in Nanoparticle-Mediated siRNA Delivery
journal, July 2014


Mesoporous silica nanoparticles in biomedical applications
journal, January 2012

  • Li, Zongxi; Barnes, Jonathan C.; Bosoy, Aleksandr
  • Chemical Society Reviews, Vol. 41, Issue 7, p. 2590-2605
  • DOI: 10.1039/c1cs15246g

Mesoporous Silica Nanoparticles for Intracellular Controlled Drug Delivery
journal, August 2010

  • Vivero-Escoto, Juan L.; Slowing, Igor I.; Trewyn, Brian G.
  • Small, Vol. 6, Issue 18
  • DOI: 10.1002/smll.200901789

Protocells: Modular Mesoporous Silica Nanoparticle-Supported Lipid Bilayers for Drug Delivery
journal, January 2016

  • Butler, Kimberly S.; Durfee, Paul N.; Theron, Christophe
  • Small, Vol. 12, Issue 16
  • DOI: 10.1002/smll.201502119

Processing Pathway Dependence of Amorphous Silica Nanoparticle Toxicity: Colloidal vs Pyrolytic
journal, September 2012

  • Zhang, Haiyuan; Dunphy, Darren R.; Jiang, Xingmao
  • Journal of the American Chemical Society, Vol. 134, Issue 38
  • DOI: 10.1021/ja304907c

Delivery of Small Interfering RNA by Peptide-Targeted Mesoporous Silica Nanoparticle-Supported Lipid Bilayers
journal, February 2012

  • Ashley, Carlee E.; Carnes, Eric C.; Epler, Katharine E.
  • ACS Nano, Vol. 6, Issue 3
  • DOI: 10.1021/nn204102q

Delivery of Ricin Toxin A-Chain by Peptide-Targeted Mesoporous Silica Nanoparticle-Supported Lipid Bilayers
journal, April 2012

  • Epler, Katharine; Padilla, David; Phillips, Genevieve
  • Advanced Healthcare Materials, Vol. 1, Issue 3, p. 348-353
  • DOI: 10.1002/adhm.201200022

Colchicine-Loaded Lipid Bilayer-Coated 50 nm Mesoporous Nanoparticles Efficiently Induce Microtubule Depolymerization upon Cell Uptake
journal, July 2010

  • Cauda, Valentina; Engelke, Hanna; Sauer, Anna
  • Nano Letters, Vol. 10, Issue 7
  • DOI: 10.1021/nl100991w

The targeted delivery of multicomponent cargos to cancer cells by nanoporous particle-supported lipid bilayers
journal, April 2011

  • Ashley, Carlee E.; Carnes, Eric C.; Phillips, Genevieve K.
  • Nature Materials, Vol. 10, Issue 5, p. 389-397
  • DOI: 10.1038/nmat2992

Irinotecan Delivery by Lipid-Coated Mesoporous Silica Nanoparticles Shows Improved Efficacy and Safety over Liposomes for Pancreatic Cancer
journal, January 2016


Engineering Chimeric Receptors To Investigate the Size- and Rigidity-Dependent Interaction of PEGylated Nanoparticles with Cells
journal, December 2015


Targeted Drug Delivery in Cancer Cells with Red-Light Photoactivated Mesoporous Silica Nanoparticles
journal, May 2013

  • Mackowiak, Stephan A.; Schmidt, Alexandra; Weiss, Veronika
  • Nano Letters, Vol. 13, Issue 6
  • DOI: 10.1021/nl400681f

Synthetic Protocells Interact with Viral Nanomachinery and Inactivate Pathogenic Human Virus
journal, March 2011


Hybrid Lipid-Capped Mesoporous Silica for Stimuli-Responsive Drug Release and Overcoming Multidrug Resistance
journal, January 2015

  • Han, Ning; Zhao, Qinfu; Wan, Long
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 5
  • DOI: 10.1021/am5082793

Porous Nanoparticle Supported Lipid Bilayers (Protocells) as Delivery Vehicles
journal, February 2009

  • Liu, Juewen; Stace-Naughton, Alison; Jiang, Xingmao
  • Journal of the American Chemical Society, Vol. 131, Issue 4, p. 1354-1355
  • DOI: 10.1021/ja808018y

Electrostatically Mediated Liposome Fusion and Lipid Exchange with a Nanoparticle-Supported Bilayer for Control of Surface Charge, Drug Containment, and Delivery
journal, June 2009

  • Liu, Juewen; Jiang, Xingmao; Ashley, Carlee
  • Journal of the American Chemical Society, Vol. 131, Issue 22, p. 7567-7569
  • DOI: 10.1021/ja902039y

Structure of an adsorbed dimyristoylphosphatidylcholine bilayer measured with specular reflection of neutrons
journal, February 1991


Formation of Supported Membranes from Vesicles
journal, June 2000


Formation of Supported Phospholipid Bilayers from Unilamellar Vesicles Investigated by Atomic Force Microscopy
journal, February 2000


Early Steps of Supported Bilayer Formation Probed by Single Vesicle Fluorescence Assays
journal, December 2002


Following the Formation of Supported Lipid Bilayers on Mica: A Study Combining AFM, QCM-D, and Ellipsometry
journal, May 2005


Formation and Spreading of Lipid Bilayers on Planar Glass Supports
journal, April 1999

  • Cremer, Paul S.; Boxer, Steven G.
  • The Journal of Physical Chemistry B, Vol. 103, Issue 13
  • DOI: 10.1021/jp983996x

Formation and Colloidal Stability of DMPC Supported Lipid Bilayers on SiO 2 Nanobeads
journal, June 2010

  • Savarala, Sushma; Ahmed, Selver; Ilies, Marc A.
  • Langmuir, Vol. 26, Issue 14
  • DOI: 10.1021/la101304v

Effect of Ion-Binding and Chemical Phospholipid Structure on the Nanomechanics of Lipid Bilayers Studied by Force Spectroscopy
journal, September 2005


The Formation of Supported Lipid Bilayers on Silica Nanoparticles Revealed by Cryoelectron Microscopy
journal, February 2005

  • Mornet, Stéphane; Lambert, Olivier; Duguet, Etienne
  • Nano Letters, Vol. 5, Issue 2
  • DOI: 10.1021/nl048153y

Biomimetic Molecular Assemblies on Glass and Mesoporous Silica Microbeads for Biotechnology
journal, January 2003

  • Buranda, Tione; Huang, Jinman; Ramarao, G. V.
  • Langmuir, Vol. 19, Issue 5
  • DOI: 10.1021/la026405+

Mesoporous silica-supported lipid bilayers (protocells) for DNA cargo delivery to the spinal cord
journal, June 2013


Ultrastable, Redispersible, Small, and Highly Organomodified Mesoporous Silica Nanotherapeutics
journal, December 2011

  • Lin, Yu-Shen; Abadeer, Nardine; Hurley, Katie R.
  • Journal of the American Chemical Society, Vol. 133, Issue 50
  • DOI: 10.1021/ja208567v

Well-Ordered Mesoporous Silica Nanoparticles as Cell Markers
journal, September 2005

  • Lin, Yu-Shen; Tsai, Chih-Pin; Huang, Hsing-Yi
  • Chemistry of Materials, Vol. 17, Issue 18
  • DOI: 10.1021/cm051014c

Impacts of Mesoporous Silica Nanoparticle Size, Pore Ordering, and Pore Integrity on Hemolytic Activity
journal, April 2010

  • Lin, Yu-Shen; Haynes, Christy L.
  • Journal of the American Chemical Society, Vol. 132, Issue 13
  • DOI: 10.1021/ja910846q

Synthesis of spherical mesoporous silica nanoparticles with nanometer-size controllable pores and outer diameters
journal, April 2009


Biphasic synthesis of colloidal mesoporous silica nanoparticles using primary amine catalysts
journal, November 2012

  • Wang, Junzheng; Sugawara-Narutaki, Ayae; Shimojima, Atsushi
  • Journal of Colloid and Interface Science, Vol. 385, Issue 1
  • DOI: 10.1016/j.jcis.2012.06.069

Biphase Stratification Approach to Three-Dimensional Dendritic Biodegradable Mesoporous Silica Nanospheres
journal, January 2014

  • Shen, Dengke; Yang, Jianping; Li, Xiaomin
  • Nano Letters, Vol. 14, Issue 2
  • DOI: 10.1021/nl404316v

The Shape Effect of Mesoporous Silica Nanoparticles on Biodistribution, Clearance, and Biocompatibility in Vivo
journal, June 2011

  • Huang, Xinglu; Li, Linlin; Liu, Tianlong
  • ACS Nano, Vol. 5, Issue 7
  • DOI: 10.1021/nn200365a

Impact of Silica Nanoparticle Design on Cellular Toxicity and Hemolytic Activity
journal, June 2011

  • Yu, Tian; Malugin, Alexander; Ghandehari, Hamidreza
  • ACS Nano, Vol. 5, Issue 7
  • DOI: 10.1021/nn2013904

Membrane bending energy concept of vesicle- and cell-shapes and shape-transitions
journal, June 1994


Universal Behavior of Membranes with Sterols
journal, March 2006


The Structure of Biological Membranes
reference-book, January 2004


Lipid vesicle adsorption versus formation of planar bilayers on solid surfaces
journal, October 1995


Influence of Mono- And Divalent Ions on the Formation of Supported Phospholipid Bilayers via Vesicle Adsorption
journal, April 2009

  • Seantier, Bastien; Kasemo, Bengt
  • Langmuir, Vol. 25, Issue 10
  • DOI: 10.1021/la804172f

Critical Considerations in the Biomedical Use of Mesoporous Silica Nanoparticles
journal, January 2012

  • Lin, Yu-Shen; Hurley, Katie R.; Haynes, Christy L.
  • The Journal of Physical Chemistry Letters, Vol. 3, Issue 3
  • DOI: 10.1021/jz2013837

Diagnostic nanoparticle targeting of the EGF-receptor in complex biological conditions using single-domain antibodies
journal, January 2014

  • Zarschler, K.; Prapainop, K.; Mahon, E.
  • Nanoscale, Vol. 6, Issue 11
  • DOI: 10.1039/c4nr00595c

Re-examining the Size/Charge Paradigm: Differing in Vivo Characteristics of Size- and Charge-Matched Mesoporous Silica Nanoparticles
journal, October 2013

  • Townson, Jason L.; Lin, Yu-Shen; Agola, Jacob O.
  • Journal of the American Chemical Society, Vol. 135, Issue 43
  • DOI: 10.1021/ja4082414

The effect of lipid oxidation on the water permeability of phospholipids bilayers
journal, January 2011

  • Lis, Mateusz; Wizert, Alicja; Przybylo, Magda
  • Physical Chemistry Chemical Physics, Vol. 13, Issue 39
  • DOI: 10.1039/c1cp21009b

Zwitterion-Stabilized Silica Nanoparticles: Toward Nonstick Nano
journal, November 2010

  • Estephan, Zaki G.; Jaber, Jad A.; Schlenoff, Joseph B.
  • Langmuir, Vol. 26, Issue 22
  • DOI: 10.1021/la103095d

A Robust Graft-to Strategy To Form Multifunctional and Stealth Zwitterionic Polymer-Coated Mesoporous Silica Nanoparticles
journal, April 2014

  • Zhu, Yongheng; Sundaram, Harihara S.; Liu, Sijun
  • Biomacromolecules, Vol. 15, Issue 5
  • DOI: 10.1021/bm500209a

Renal clearance of quantum dots
journal, September 2007

  • Soo Choi, Hak; Liu, Wenhao; Misra, Preeti
  • Nature Biotechnology, Vol. 25, Issue 10
  • DOI: 10.1038/nbt1340

Surface Engineering of Liposomes for Stealth Behavior
journal, October 2013


Zwitterionic Biocompatible Quantum Dots for Wide pH Stability and Weak Nonspecific Binding to Cells
journal, August 2009

  • Breus, Vladimir V.; Heyes, Colin D.; Tron, Kyrylo
  • ACS Nano, Vol. 3, Issue 9, p. 2573-2580
  • DOI: 10.1021/nn900600w

Beyond drug delivery
journal, March 2008


Aerosol-assisted self-assembly of mesostructured spherical nanoparticles
journal, March 1999

  • Lu, Yunfeng; Fan, Hongyou; Stump, Aaron
  • Nature, Vol. 398, Issue 6724, p. 223-226
  • DOI: 10.1038/18410

Understanding the correlation between in vitro and in vivo immunotoxicity tests for nanomedicines
journal, December 2013


The chick embryo and its chorioallantoic membrane (CAM) for the in vivo evaluation of drug delivery systems☆
journal, September 2007


Intravital imaging of embryonic and tumor neovasculature using viral nanoparticles
journal, July 2010

  • Leong, Hon Sing; Steinmetz, Nicole F.; Ablack, Amber
  • Nature Protocols, Vol. 5, Issue 8, p. 1406-1417
  • DOI: 10.1038/nprot.2010.103

Biocompatibility of Mesoporous Silica Nanoparticles
journal, August 2012

  • Asefa, Tewodros; Tao, Zhimin
  • Chemical Research in Toxicology, Vol. 25, Issue 11
  • DOI: 10.1021/tx300166u

Protein-nanoparticle interactions
journal, February 2008


The cellular response to neuregulins is governed by complex interactions of the erbB receptor family
journal, October 1995

  • Riese, D. J.; van Raaij, T. M.; Plowman, G. D.
  • Molecular and Cellular Biology, Vol. 15, Issue 10
  • DOI: 10.1128/MCB.15.10.5770

Gemcitabine-loaded liposomes: rationale, potentialities and future perspectives
journal, November 2012

  • Federico, Cinzia; Morittu, Valeria M.; Britti, Domenico
  • International Journal of Nanomedicine, p. 5423
  • DOI: 10.2147/IJN.S34025

Gemcitabine: Metabolism and molecular mechanisms of action, sensitivity and chemoresistance in pancreatic cancer
journal, October 2014


Principles of lysosomal membrane degradation
journal, April 2009

  • Schulze, Heike; Kolter, Thomas; Sandhoff, Konrad
  • Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, Vol. 1793, Issue 4
  • DOI: 10.1016/j.bbamcr.2008.09.020

Cytotoxicity of Graphene Oxide and Graphene in Human Erythrocytes and Skin Fibroblasts
journal, June 2011

  • Liao, Ken-Hsuan; Lin, Yu-Shen; Macosko, Christopher W.
  • ACS Applied Materials & Interfaces, Vol. 3, Issue 7
  • DOI: 10.1021/am200428v

Works referencing / citing this record:

Establishing the effects of mesoporous silica nanoparticle properties on in vivo disposition using imaging-based pharmacokinetics
journal, October 2018


Cell membrane biomimetic nanoparticles for inflammation and cancer targeting in drug delivery
journal, January 2020

  • Wang, Huaiji; Liu, Ying; He, Ruiqing
  • Biomaterials Science, Vol. 8, Issue 2
  • DOI: 10.1039/c9bm01392j

On the issue of transparency and reproducibility in nanomedicine
journal, July 2019

  • Leong, Hon S.; Butler, Kimberly S.; Brinker, C. Jeffrey
  • Nature Nanotechnology, Vol. 14, Issue 7
  • DOI: 10.1038/s41565-019-0496-9

Mesoporous Silica Nanoparticles as Drug Delivery Vehicles in Cancer
journal, July 2017

  • Watermann, Anna; Brieger, Juergen
  • Nanomaterials, Vol. 7, Issue 7, p. 189
  • DOI: 10.3390/nano7070189

Approaches to improve the biocompatibility and systemic circulation of inorganic porous nanoparticles
journal, January 2018

  • Tamarov, K.; Näkki, S.; Xu, W.
  • Journal of Materials Chemistry B, Vol. 6, Issue 22
  • DOI: 10.1039/c8tb00462e

Large-Pore Functionalized Mesoporous Silica Nanoparticles as Drug Delivery Vector for a Highly Cytotoxic Hybrid Platinum-Acridine Anticancer Agent
journal, February 2017

  • Zheng, Ye; Fahrenholtz, Cale D.; Hackett, Christopher L.
  • Chemistry - A European Journal, Vol. 23, Issue 14
  • DOI: 10.1002/chem.201604868

Toxicological Evaluation of SiO2 Nanoparticles by Zebrafish Embryo Toxicity Test
journal, February 2019

  • Vranic, Sandra; Shimada, Yasuhito; Ichihara, Sahoko
  • International Journal of Molecular Sciences, Vol. 20, Issue 4
  • DOI: 10.3390/ijms20040882

Mesoporous Silica and Organosilica Nanoparticles: Physical Chemistry, Biosafety, Delivery Strategies, and Biomedical Applications
journal, November 2017

  • Croissant, Jonas G.; Fatieiev, Yevhen; Almalik, Abdulaziz
  • Advanced Healthcare Materials, Vol. 7, Issue 4
  • DOI: 10.1002/adhm.201700831

The role of surface charge in the interaction of nanoparticles with model pulmonary surfactants
journal, January 2018


Functionalization of carboxylated lignin nanoparticles for targeted and pH-responsive delivery of anticancer drugs
journal, November 2017

  • Figueiredo, Patrícia; Ferro, Cláudio; Kemell, Marianna
  • Nanomedicine, Vol. 12, Issue 21
  • DOI: 10.2217/nnm-2017-0219

Versatile Surface Functionalization of Metal-Organic Frameworks through Direct Metal Coordination with a Phenolic Lipid Enables Diverse Applications
journal, February 2018

  • Zhu, Wei; Xiang, Guolei; Shang, Jin
  • Advanced Functional Materials, Vol. 28, Issue 16
  • DOI: 10.1002/adfm.201705274

Cell‐Templated Silica Microparticles with Supported Lipid Bilayers as Artificial Antigen‐Presenting Cells for T Cell Activation
journal, December 2018

  • Olden, Brynn R.; Perez, Caleb R.; Wilson, Ashley L.
  • Advanced Healthcare Materials
  • DOI: 10.1002/adhm.201801188

Synchronized Ratiometric Codelivery of Metformin and Topotecan through Engineered Nanocarrier Facilitates In Vivo Synergistic Precision Levels at Tumor Site
journal, August 2018

  • Banala, Venkatesh Teja; Sharma, Shweta; Barnwal, Puja
  • Advanced Healthcare Materials, Vol. 7, Issue 19
  • DOI: 10.1002/adhm.201800300

Adsorption and fusion of hybrid lipid/polymer vesicles onto 2D and 3D surfaces
journal, January 2018

  • Paxton, Walter F.; McAninch, Patrick T.; Shin, Sun Hae Ra
  • Soft Matter, Vol. 14, Issue 40
  • DOI: 10.1039/c8sm00343b

Delivering CRISPR: a review of the challenges and approaches
journal, January 2018


Establishing the effects of mesoporous silica nanoparticle properties on in vivo disposition using imaging-based pharmacokinetics
journal, October 2018


Understanding the Connection between Nanoparticle Uptake and Cancer Treatment Efficacy using Mathematical Modeling
journal, May 2018


Biosafety of Mesoporous Silica Nanoparticles
journal, August 2018


Smart Mesoporous Silica Nanoparticles for Protein Delivery
journal, April 2019