DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Micromechanical characterization of shales through nanoindentation and energy dispersive x-ray spectrometry

Abstract

Shales are heterogeneous sedimentary rocks which typically comprise a variable mineralogy (including compacted clay particles sub-micrometer in size), silt grains, and nanometer sized pores collectively arranged with transversely isotropic symmetry. Moreover, a detailed understanding of the micro- and sub-microscale geomechanics of these minerals is required to improve models of shale strength and stiffness properties. In this paper, we propose a linked experimental–computational approach and validate a combination of grid nanoindentation and Scanning Electron Microscopy (SEM) with Energy and Wavelength Dispersive X-ray Spectrometry (EDS/WDS) at the same spatial locations to identify both the nano-mechanical morphology and local mineralogy of these nanocomposites. The experimental parameters of each method are chosen to assess a similar volume of material. By considering three different shales of varying mineralogy and mechanical diversity, we show through the EMMIX statistical iterative technique that the constituent phases, including highly compacted plate- or sheet-like clay particles, carbonates, silicates, and sulfides, have distinct nano-mechanical morphologies and associated indentation moduli and hardness. Nanoindentation-based strength homogenization analysis determines an average clay packing density, friction coefficient, and solid cohesion for each tested shale sample. Comparison of bulk to microscale geomechanical properties, through bulk porosimetry measurements, reveals a close correspondence between bulk and microscale claymore » packing densities. Determining the mechanical microstructure and material properties is useful for predictive microporomechanical models of the stiffness and strength properties of shale. Furthermore, the experimental and computational approaches presented here also apply to other chemically and mechanically complex materials exhibiting nanogranular, composite behavior.« less

Authors:
 [1]; ORCiD logo [2]; ORCiD logo [3];  [4];  [5];  [5];  [6]
  1. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Structural Dynamics
  2. LGM Consultants Engineering Services, Tarrytown, NY (United States)
  3. North Carolina State Univ., Raleigh, NC (United States). Dept. of Civil, Construction, and Environmental Engineering
  4. CSIRO Energy, Clayton, VIC (Australia). Ian Wark Lab.
  5. Australian Resources Research Centre, Kensington, WA (Australia)
  6. Univ. of Melbourne (Australia). Dept. of Chemical and Biomolecular Engineering
Publication Date:
Research Org.:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1340233
Report Number(s):
SAND-2016-2837J
Journal ID: ISSN 2352-3808; PII: S2352380816300843
Grant/Contract Number:  
AC04-94AL85000
Resource Type:
Accepted Manuscript
Journal Name:
Geomechanics for Energy and the Environment
Additional Journal Information:
Journal Volume: 9; Journal Issue: C; Journal ID: ISSN 2352-3808
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 58 GEOSCIENCES; Micromechanical characterization; Shale; Nanoindentation; Energy and wavelength dispersive x-ray spectrometry; Scanning electron microscopy; Strength homogenization; Cathodoluminescence

Citation Formats

Veytskin, Yuriy B., Tammina, Vamsi K., Bobko, Christopher P., Hartley, Patrick G., Clennell, Michael B., Dewhurst, David N., and Dagastine, Raymond R. Micromechanical characterization of shales through nanoindentation and energy dispersive x-ray spectrometry. United States: N. p., 2017. Web. doi:10.1016/j.gete.2016.10.004.
Veytskin, Yuriy B., Tammina, Vamsi K., Bobko, Christopher P., Hartley, Patrick G., Clennell, Michael B., Dewhurst, David N., & Dagastine, Raymond R. Micromechanical characterization of shales through nanoindentation and energy dispersive x-ray spectrometry. United States. https://doi.org/10.1016/j.gete.2016.10.004
Veytskin, Yuriy B., Tammina, Vamsi K., Bobko, Christopher P., Hartley, Patrick G., Clennell, Michael B., Dewhurst, David N., and Dagastine, Raymond R. Wed . "Micromechanical characterization of shales through nanoindentation and energy dispersive x-ray spectrometry". United States. https://doi.org/10.1016/j.gete.2016.10.004. https://www.osti.gov/servlets/purl/1340233.
@article{osti_1340233,
title = {Micromechanical characterization of shales through nanoindentation and energy dispersive x-ray spectrometry},
author = {Veytskin, Yuriy B. and Tammina, Vamsi K. and Bobko, Christopher P. and Hartley, Patrick G. and Clennell, Michael B. and Dewhurst, David N. and Dagastine, Raymond R.},
abstractNote = {Shales are heterogeneous sedimentary rocks which typically comprise a variable mineralogy (including compacted clay particles sub-micrometer in size), silt grains, and nanometer sized pores collectively arranged with transversely isotropic symmetry. Moreover, a detailed understanding of the micro- and sub-microscale geomechanics of these minerals is required to improve models of shale strength and stiffness properties. In this paper, we propose a linked experimental–computational approach and validate a combination of grid nanoindentation and Scanning Electron Microscopy (SEM) with Energy and Wavelength Dispersive X-ray Spectrometry (EDS/WDS) at the same spatial locations to identify both the nano-mechanical morphology and local mineralogy of these nanocomposites. The experimental parameters of each method are chosen to assess a similar volume of material. By considering three different shales of varying mineralogy and mechanical diversity, we show through the EMMIX statistical iterative technique that the constituent phases, including highly compacted plate- or sheet-like clay particles, carbonates, silicates, and sulfides, have distinct nano-mechanical morphologies and associated indentation moduli and hardness. Nanoindentation-based strength homogenization analysis determines an average clay packing density, friction coefficient, and solid cohesion for each tested shale sample. Comparison of bulk to microscale geomechanical properties, through bulk porosimetry measurements, reveals a close correspondence between bulk and microscale clay packing densities. Determining the mechanical microstructure and material properties is useful for predictive microporomechanical models of the stiffness and strength properties of shale. Furthermore, the experimental and computational approaches presented here also apply to other chemically and mechanically complex materials exhibiting nanogranular, composite behavior.},
doi = {10.1016/j.gete.2016.10.004},
journal = {Geomechanics for Energy and the Environment},
number = C,
volume = 9,
place = {United States},
year = {Wed Mar 01 00:00:00 EST 2017},
month = {Wed Mar 01 00:00:00 EST 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 47 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

The nanogranular nature of C–S–H
journal, January 2007

  • Constantinides, Georgios; Ulm, Franz-Josef
  • Journal of the Mechanics and Physics of Solids, Vol. 55, Issue 1
  • DOI: 10.1016/j.jmps.2006.06.003

A multi-technique investigation of the nanoporosity of cement paste
journal, March 2007


The nano-mechanical morphology of shale
journal, April 2008


Mechanical properties of North Sea Tertiary mudrocks: investigations by triaxial testing of side-wall cores
journal, March 1998


Mechanical and petrophysical properties of North Sea shales
journal, December 1998

  • Horsrud, P.; SØnstebØ, E. F.; BØe, R.
  • International Journal of Rock Mechanics and Mining Sciences, Vol. 35, Issue 8
  • DOI: 10.1016/S0148-9062(98)00162-4

Geomechanical properties related to top seal leakage in the Carnarvon Basin, Northwest Shelf, Australia
journal, July 2003


Compaction behavior of argillaceous sediments as function of diagenesis
journal, March 2004


A statistical evaluation of intact rock failure criteria constrained by polyaxial test data for five different rocks
journal, September 2002

  • Colmenares, L. B.; Zoback, M. D.
  • International Journal of Rock Mechanics and Mining Sciences, Vol. 39, Issue 6
  • DOI: 10.1016/S1365-1609(02)00048-5

A laboratory procedure proposed for mechanical testing of shales
journal, January 2014

  • Minaeian, Vida; Rasouli, Vamegh; Dewhurst, David
  • The APPEA Journal, Vol. 54, Issue 1
  • DOI: 10.1071/AJ13034

Elastic constants and velocity surfaces of indurated anisotropic shales
journal, September 1994

  • Johnston, Joel E.; Christensen, Nikolas I.
  • Surveys in Geophysics, Vol. 15, Issue 5
  • DOI: 10.1007/BF00690171

Seismic anisotropy of shales
journal, April 1995

  • Johnston, Joel E.; Christensen, Nikolas I.
  • Journal of Geophysical Research: Solid Earth, Vol. 100, Issue B4
  • DOI: 10.1029/95JB00031

Seismic anisotropy in sedimentary rocks, part 2: Laboratory data
journal, September 2002


Impact of fabric, microcracks and stress field on shale anisotropy
journal, April 2006


Stress‐dependent seismic anisotropy of shales
journal, January 1999


Prediction of sonic velocities in shale from porosity and clay fraction obtained from logs — A North Sea well case study
journal, January 2015

  • Pervukhina, Marina; Golodoniuc, Pavel; Gurevich, Boris
  • GEOPHYSICS, Vol. 80, Issue 1
  • DOI: 10.1190/geo2014-0044.1

Grid indentation analysis of composite microstructure and mechanics: Principles and validation
journal, August 2006

  • Constantinides, G.; Ravi Chandran, K. S.; Ulm, F. -J.
  • Materials Science and Engineering: A, Vol. 430, Issue 1-2
  • DOI: 10.1016/j.msea.2006.05.125

The nanogranular behavior of C-S-H at elevated temperatures (up to 700 °C)
journal, January 2007


The nanogranular nature of shale
journal, June 2006


The nanogranular acoustic signature of shale
journal, May 2009

  • Ortega, J. Alberto; Ulm, Franz-Josef; Abousleiman, Younane
  • GEOPHYSICS, Vol. 74, Issue 3
  • DOI: 10.1190/1.3097887

Nanoscale Elastic Properties of Montmorillonite upon Water Adsorption
journal, October 2012

  • Ebrahimi, Davoud; Pellenq, Roland J. -M.; Whittle, Andrew J.
  • Langmuir, Vol. 28, Issue 49
  • DOI: 10.1021/la302997g

The nanogranular origin of friction and cohesion in shale-A strength homogenization approach to interpretation of nanoindentation results
journal, November 2010

  • Bobko, Christopher P.; Gathier, Benjamin; Ortega, J. Alberto
  • International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 35, Issue 17
  • DOI: 10.1002/nag.984

Nanochemomechanical assessment of shale: a coupled WDS-indentation analysis
journal, September 2012


Nano to Macro Mechanical Characterization of Shale
conference, April 2013

  • Kumar, Vikas; Sondergeld, Carl H.; Rai, Chandra Shekhar
  • SPE Annual Technical Conference and Exhibition
  • DOI: 10.2118/159804-MS

Mechanical properties of organic matter in shales mapped at the nanometer scale
journal, January 2015


Impact of thermal maturation on nano-scale elastic properties of organic matter in shales
journal, February 2016


Characterisation of Gas Transport Properties of the Opalinus Clay, a Potential Host Rock Formation for Radioactive Waste Disposal
journal, January 2005

  • Marschall, P.; Horseman, S.; Gimmi, T.
  • Oil & Gas Science and Technology, Vol. 60, Issue 1
  • DOI: 10.2516/ogst:2005008

Empirical strength prediction for preserved shales
journal, November 2015


An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments
journal, June 1992

  • Oliver, W. C.; Pharr, G. M.
  • Journal of Materials Research, Vol. 7, Issue 06, p. 1564-1583
  • DOI: 10.1557/JMR.1992.1564

Nanoindentation analysis as a two-dimensional tool for mapping the mechanical properties of complex surfaces
journal, March 2009

  • Randall, Nicholas X.; Vandamme, Matthieu; Ulm, Franz-Josef
  • Journal of Materials Research, Vol. 24, Issue 3
  • DOI: 10.1557/jmr.2009.0149

The EMMIX Algorithm for the Fitting of Normal and t -Components
journal, January 1999

  • McLachlan, Geoff J.; Peel, David
  • Journal of Statistical Software, Vol. 4, Issue 2
  • DOI: 10.18637/jss.v004.i02

Nanogranular origin of concrete creep
journal, June 2009

  • Vandamme, M.; Ulm, F. -J.
  • Proceedings of the National Academy of Sciences, Vol. 106, Issue 26
  • DOI: 10.1073/pnas.0901033106

Analysis of Berkovich indentation
journal, January 1996

  • Larsson, P. -L.; Giannakopoulos, A. E.; SÖderlund, E.
  • International Journal of Solids and Structures, Vol. 33, Issue 2
  • DOI: 10.1016/0020-7683(95)00033-7

CASINO V2.42—A Fast and Easy-to-use Modeling Tool for Scanning Electron Microscopy and Microanalysis Users
journal, January 2007

  • Drouin, Dominique; Couture, Alexandre Réal; Joly, Dany
  • Scanning, Vol. 29, Issue 3
  • DOI: 10.1002/sca.20000

Elastic properties of solid clays
conference, March 2012

  • Wang, Zhijing (Zee); Wang, Hui; Cates, Michael E.
  • SEG Technical Program Expanded Abstracts 1998
  • DOI: 10.1190/1.1820064

Seismic anisotropy of shales
journal, September 2005


On the application of focused ion beam nanotomography in characterizing the 3D pore space geometry of Opalinus clay
journal, January 2011

  • Keller, Lukas M.; Holzer, Lorenz; Wepf, Roger
  • Physics and Chemistry of the Earth, Parts A/B/C, Vol. 36, Issue 17-18
  • DOI: 10.1016/j.pce.2011.07.010

Homogenization of Cohesive-Frictional Strength Properties of Porous Composites: Linear Comparison Composite Approach
journal, March 2011


Works referencing / citing this record:

Multi-scale evaluation of mechanical properties of the Bakken shale
journal, September 2018

  • Li, Chunxiao; Ostadhassan, Mehdi; Abarghani, Arash
  • Journal of Materials Science, Vol. 54, Issue 3
  • DOI: 10.1007/s10853-018-2946-4

In Vitro Properties for Bioceramics Composed of Silica and Titanium Oxide Composites
journal, December 2018

  • Chen, I-Hao; Lian, Meng-Jia; Fang, Wei
  • Applied Sciences, Vol. 9, Issue 1
  • DOI: 10.3390/app9010066

Experimental Study and Numerical Modeling of Fracture Propagation in Shale Rocks During Brazilian Disk Test
journal, March 2018

  • Mousavi Nezhad, Mohaddeseh; Fisher, Quentin J.; Gironacci, Elia
  • Rock Mechanics and Rock Engineering, Vol. 51, Issue 6
  • DOI: 10.1007/s00603-018-1429-x