DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Reactivity of Cyclopentadienyl Molybdenum Compounds towards Formic Acid: Structural Characterization of CpMo(PMe 3 )(CO) 2 H, CpMo(PMe 3 ) 2 (CO)H, [CpMo(μ-O)(μ-O 2 CH)] 2 , and [Cp*Mo(μ-O)(μ-O 2 CH)] 2

Abstract

Here, the molecular structures of CpMo(PMe3)(CO)2H and CpMo(PMe3)2(CO)H have been determined by X-ray diffraction, thereby revealing four-legged piano-stool structures in which the hydride ligand is trans to CO. However, in view of the different nature of the four basal ligands, the geometries of CpMo(PMe3)(CO)2H and CpMo(PMe3)2(CO)H deviate from that of an idealized four-legged piano stool, such that the two ligands that are orthogonal to the trans H–Mo–CO moiety are displaced towards the hydride ligand. While CpRMo(PMe3)3–x(CO)xH (CpR = Cp, Cp*; x = 1, 2, 3) are catalysts for the release of H2 from formic acid, the carbonyl derivatives, CpRMo(CO)3H, are also observed to form dinuclear formate compounds, namely, [CpRMo(μ-O)(μ-O2CH)]2. The nature of the Mo···Mo interactions in [CpMo(μ-O)(μ-O2CH)]2 and [Cp*Mo(μ-O)(μ-O2CH)]2 have been addressed computationally. In this regard, the two highest occupied molecular orbitals of [CpMo(μ-O)(μ-O2CH)]2 correspond to metal-based δ* (HOMO) and σ (HOMO–1) orbitals. The σ2δ*2 configuration thus corresponds to a formal direct Mo–Mo bond order of zero. The preferential occupation of the δ* orbital rather than the δ orbital is a consequence of the interaction of the latter orbital with p orbitals of the bridging oxo ligands. In essence, lone-pair donation from oxygen increases the electron count so that themore » molybdenum centers can achieve an 18-electron configuration without the existence of a Mo–Mo bond, whereas a Mo=Mo double bond is required in the absence of lone-pair donation.« less

Authors:
 [1]; ORCiD logo [1]
  1. Department of Chemistry, Columbia University, New York, New York 10027, United States
Publication Date:
Research Org.:
Columbia Univ., New York, NY (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1340022
Alternate Identifier(s):
OSTI ID: 1344799; OSTI ID: 1425494
Grant/Contract Number:  
FG02-93ER14339
Resource Type:
Published Article
Journal Name:
Inorganic Chemistry
Additional Journal Information:
Journal Name: Inorganic Chemistry Journal Volume: 56 Journal Issue: 3; Journal ID: ISSN 0020-1669
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Neary, Michelle C., and Parkin, Gerard. Reactivity of Cyclopentadienyl Molybdenum Compounds towards Formic Acid: Structural Characterization of CpMo(PMe 3 )(CO) 2 H, CpMo(PMe 3 ) 2 (CO)H, [CpMo(μ-O)(μ-O 2 CH)] 2 , and [Cp*Mo(μ-O)(μ-O 2 CH)] 2. United States: N. p., 2017. Web. doi:10.1021/acs.inorgchem.6b02606.
Neary, Michelle C., & Parkin, Gerard. Reactivity of Cyclopentadienyl Molybdenum Compounds towards Formic Acid: Structural Characterization of CpMo(PMe 3 )(CO) 2 H, CpMo(PMe 3 ) 2 (CO)H, [CpMo(μ-O)(μ-O 2 CH)] 2 , and [Cp*Mo(μ-O)(μ-O 2 CH)] 2. United States. https://doi.org/10.1021/acs.inorgchem.6b02606
Neary, Michelle C., and Parkin, Gerard. Thu . "Reactivity of Cyclopentadienyl Molybdenum Compounds towards Formic Acid: Structural Characterization of CpMo(PMe 3 )(CO) 2 H, CpMo(PMe 3 ) 2 (CO)H, [CpMo(μ-O)(μ-O 2 CH)] 2 , and [Cp*Mo(μ-O)(μ-O 2 CH)] 2". United States. https://doi.org/10.1021/acs.inorgchem.6b02606.
@article{osti_1340022,
title = {Reactivity of Cyclopentadienyl Molybdenum Compounds towards Formic Acid: Structural Characterization of CpMo(PMe 3 )(CO) 2 H, CpMo(PMe 3 ) 2 (CO)H, [CpMo(μ-O)(μ-O 2 CH)] 2 , and [Cp*Mo(μ-O)(μ-O 2 CH)] 2},
author = {Neary, Michelle C. and Parkin, Gerard},
abstractNote = {Here, the molecular structures of CpMo(PMe3)(CO)2H and CpMo(PMe3)2(CO)H have been determined by X-ray diffraction, thereby revealing four-legged piano-stool structures in which the hydride ligand is trans to CO. However, in view of the different nature of the four basal ligands, the geometries of CpMo(PMe3)(CO)2H and CpMo(PMe3)2(CO)H deviate from that of an idealized four-legged piano stool, such that the two ligands that are orthogonal to the trans H–Mo–CO moiety are displaced towards the hydride ligand. While CpRMo(PMe3)3–x(CO)xH (CpR = Cp, Cp*; x = 1, 2, 3) are catalysts for the release of H2 from formic acid, the carbonyl derivatives, CpRMo(CO)3H, are also observed to form dinuclear formate compounds, namely, [CpRMo(μ-O)(μ-O2CH)]2. The nature of the Mo···Mo interactions in [CpMo(μ-O)(μ-O2CH)]2 and [Cp*Mo(μ-O)(μ-O2CH)]2 have been addressed computationally. In this regard, the two highest occupied molecular orbitals of [CpMo(μ-O)(μ-O2CH)]2 correspond to metal-based δ* (HOMO) and σ (HOMO–1) orbitals. The σ2δ*2 configuration thus corresponds to a formal direct Mo–Mo bond order of zero. The preferential occupation of the δ* orbital rather than the δ orbital is a consequence of the interaction of the latter orbital with p orbitals of the bridging oxo ligands. In essence, lone-pair donation from oxygen increases the electron count so that the molybdenum centers can achieve an 18-electron configuration without the existence of a Mo–Mo bond, whereas a Mo=Mo double bond is required in the absence of lone-pair donation.},
doi = {10.1021/acs.inorgchem.6b02606},
journal = {Inorganic Chemistry},
number = 3,
volume = 56,
place = {United States},
year = {Thu Jan 19 00:00:00 EST 2017},
month = {Thu Jan 19 00:00:00 EST 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1021/acs.inorgchem.6b02606

Citation Metrics:
Cited by: 6 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Carbonyl abstraction reactions of Cp*Mo(PMe3)3H with CO2, (CH2O)n, HCO2H, and MeOH: the synthesis of Cp*Mo(PMe3)2(CO)H and the catalytic decarboxylation of formic acid
journal, January 2002


Quantification of “fuzzy” chemical concepts: a computational perspective
journal, January 2012

  • Gonthier, Jérôme F.; Steinmann, Stephan N.; Wodrich, Matthew D.
  • Chemical Society Reviews, Vol. 41, Issue 13
  • DOI: 10.1039/c2cs35037h

Formic acid as a hydrogen source – recent developments and future trends
journal, January 2012

  • Grasemann, Martin; Laurenczy, Gábor
  • Energy & Environmental Science, Vol. 5, Issue 8
  • DOI: 10.1039/c2ee21928j

Charge, bond order and valence in the AB initio SCF theory
journal, May 1983


Alkyl and aryl derivatives of π-cyclopentadienyl compounds of chromium, molybdenum, tungsten, and iron
journal, September 1956


Cobalt Phthalocyanine – аn Effective Catalyst of Hydrogen Production from Formic Acid
journal, January 2009

  • Kudrik, Evgeny V.; Makarov, Sergei V.; Ageeva, Elena S.
  • Macroheterocycles, Vol. 2, Issue 1
  • DOI: 10.6060/mhc2009.1.69

Piano-stool complexes of the CpML4 type
journal, January 1982

  • Kubacek, Pavel; Hoffmann, Roald; Havlas, Zdenek
  • Organometallics, Vol. 1, Issue 1
  • DOI: 10.1021/om00061a029

To Bend or Not to Bend: Electronic Structural Analysis of Linear versus Bent M−H−M Interactions in Dinickel Bis(dialkylphosphino)methane Complexes
journal, May 2010

  • Wilson, Zakiya S.; Stanley, George G.; Vicic, David A.
  • Inorganic Chemistry, Vol. 49, Issue 12
  • DOI: 10.1021/ic902198b

Hydrogen generation from formic acid and alcohols using homogeneous catalysts
journal, January 2010

  • Johnson, Tarn C.; Morris, David J.; Wills, Martin
  • Chem. Soc. Rev., Vol. 39, Issue 1
  • DOI: 10.1039/B904495G

Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals
journal, January 1985

  • Hay, P. Jeffrey; Wadt, Willard R.
  • The Journal of Chemical Physics, Vol. 82, Issue 1, p. 299-310
  • DOI: 10.1063/1.448975

Efficient Dehydrogenation of Formic Acid Using an Iron Catalyst
journal, September 2011


Natural resonance theory: I. General formalism
journal, April 1998


Theoretical investigation of the metal–metal interaction in dimolybdenum complexes with bridging hydride and methyl ligands
journal, November 2004


Mono-η-cyclopentadienylmolybdenum chemistry. Some oxo-, oxohalogeno-, halogeno-, thio-, η-disulphido-, and thiohalogeno-derivatives
journal, January 1981

  • Bunker, Mark J.; Green, Malcolm L. H.
  • J. Chem. Soc., Dalton Trans., Issue 3
  • DOI: 10.1039/DT9810000847

Geometric distortions in four-legged piano-stool cyclopentadienyl transition-metal complexes
journal, January 1993


Molybdenum(V) complexes with formate: Geometric isomerism of the [Mo2O4Cl2(Py)2(HCOO)]− ion
journal, November 2013


Natural bond orbital methods: Natural bond orbital methods
journal, June 2011

  • Glendening, Eric D.; Landis, Clark R.; Weinhold, Frank
  • Wiley Interdisciplinary Reviews: Computational Molecular Science, Vol. 2, Issue 1
  • DOI: 10.1002/wcms.51

Nickel-catalyzed release of H 2 from formic acid and a new method for the synthesis of zerovalent Ni(PMe 3 ) 4
journal, January 2016

  • Neary, Michelle C.; Parkin, Gerard
  • Dalton Transactions, Vol. 45, Issue 37
  • DOI: 10.1039/C6DT01499B

Organometallic conformational equilibriums. XI. cis-trans Isomerism and stereochemical nonrigidity in cyclopentadienylmolybdenum complexes
journal, October 1970

  • Faller, John W.; Anderson, Andrew Stephen
  • Journal of the American Chemical Society, Vol. 92, Issue 20
  • DOI: 10.1021/ja00723a007

The occurrence and representation of three-centre two-electron bonds in covalent inorganic compounds
journal, January 2012

  • Green, Jennifer C.; Green, Malcolm L. H.; Parkin, Gerard
  • Chemical Communications, Vol. 48, Issue 94
  • DOI: 10.1039/c2cc35304k

Efficient H 2 generation from formic acid using azole complexes in water
journal, January 2014

  • Manaka, Yuichi; Wang, Wan-Hui; Suna, Yuki
  • Catal. Sci. Technol., Vol. 4, Issue 1
  • DOI: 10.1039/C3CY00830D

Synergic Catalysis of PdCu Alloy Nanoparticles within a Macroreticular Basic Resin for Hydrogen Production from Formic Acid
journal, July 2015

  • Mori, Kohsuke; Tanaka, Hiromasa; Dojo, Masahiro
  • Chemistry - A European Journal, Vol. 21, Issue 34
  • DOI: 10.1002/chem.201501760

Theoretical Study of the Pseudo-Jahn−Teller Effect in the Edge-Sharing Bioctahedral Complex Mo 2 (DXylF) 2 (O 2 CCH 3 ) 22 -O) 2
journal, October 2009

  • Żurek, Justyna M.; Paterson, Martin J.
  • Inorganic Chemistry, Vol. 48, Issue 22
  • DOI: 10.1021/ic901285f

Bond Order Analysis Based on the Laplacian of Electron Density in Fuzzy Overlap Space
journal, March 2013

  • Lu, Tian; Chen, Feiwu
  • The Journal of Physical Chemistry A, Vol. 117, Issue 14
  • DOI: 10.1021/jp4010345

SHELXT – Integrated space-group and crystal-structure determination
journal, January 2015

  • Sheldrick, George M.
  • Acta Crystallographica Section A Foundations and Advances, Vol. 71, Issue 1, p. 3-8
  • DOI: 10.1107/S2053273314026370

Journey from Mo−Mo Quadruple Bonds to Quintuple Bonds
journal, August 2009

  • Tsai, Yi-Chou; Chen, Hong-Zhang; Chang, Chie-Chieh
  • Journal of the American Chemical Society, Vol. 131, Issue 35
  • DOI: 10.1021/ja905035f

Bridged and unbridged M2L10 complexes
journal, July 1980

  • Shaik, Sason; Hoffmann, Roald; Fisel, C. Richard
  • Journal of the American Chemical Society, Vol. 102, Issue 14
  • DOI: 10.1021/ja00534a001

Hydrogen Storage in Formic Acid – Amine Adducts
journal, April 2011

  • Boddien, Albert; Gärtner, Felix; Mellmann, Dörthe
  • CHIMIA International Journal for Chemistry, Vol. 65, Issue 4
  • DOI: 10.2533/chimia.2011.214

A [NiFe]hydrogenase model that catalyses the release of hydrogen from formic acid
journal, January 2014

  • Nguyen, Nga T.; Mori, Yuki; Matsumoto, Takahiro
  • Chem. Commun., Vol. 50, Issue 87
  • DOI: 10.1039/C4CC05911E

Hydrogen storage tanks for vehicles: Recent progress and current status
journal, April 2011


Distortions in the legs of four-legged piano-stool structures
journal, June 1990


Experimental and theoretical evidence for double bonds between metal atoms. Dinuclear alkoxo-bridged ditungsten(IV,IV) complexes W2Cl4(OR)4(ROH)2
journal, August 1981

  • Anderson, Lori Beth; Cotton, F. Albert; DeMarco, David
  • Journal of the American Chemical Society, Vol. 103, Issue 17
  • DOI: 10.1021/ja00407a022

X-ray and neutron diffraction studies of tricarbonyl(.eta.-pentamethylcyclopentadienyl)hydridomolybdenum at 163 K
journal, October 1993

  • Brammer, Lee; Zhao, Dong; Bullock, R. Morris
  • Inorganic Chemistry, Vol. 32, Issue 22
  • DOI: 10.1021/ic00074a027

Edge-sharing bioctahedral dimolybdenum(III) molecules with .mu.-RS groups. Direct experimental evidence for spin-state equilibria
journal, December 1985

  • Cotton, F. Albert; Diebold, Michael P.; O'Connor, Charles .
  • Journal of the American Chemical Society, Vol. 107, Issue 25
  • DOI: 10.1021/ja00311a036

Biomass Conversion in Water at 330−410 °C and 30−50 MPa. Identification of Key Compounds for Indicating Different Chemical Reaction Pathways
journal, January 2003

  • Kruse, A.; Gawlik, A.
  • Industrial & Engineering Chemistry Research, Vol. 42, Issue 2
  • DOI: 10.1021/ie0202773

New approaches to hydrogen storage
journal, January 2009


The current status of hydrogen storage in metal–organic frameworks
journal, January 2008

  • Zhao, Dan; Yuan, Daqiang; Zhou, Hong-Cai
  • Energy & Environmental Science, Vol. 1, Issue 2
  • DOI: 10.1039/b808322n

Natural resonance theory: II. Natural bond order and valency
journal, April 1998


Ultrashort metal–metal distances and extreme bond orders
journal, September 2009

  • Wagner, Frank R.; Noor, Awal; Kempe, Rhett
  • Nature Chemistry, Vol. 1, Issue 7
  • DOI: 10.1038/nchem.359

Efficient Catalytic Decomposition of Formic Acid for the Selective Generation of H 2 and H/D Exchange with a Water-Soluble Rhodium Complex in Aqueous Solution
journal, October 2008

  • Fukuzumi, Shunichi; Kobayashi, Takeshi; Suenobu, Tomoyoshi
  • ChemSusChem, Vol. 1, Issue 10
  • DOI: 10.1002/cssc.200800147

Nature of the M–M bonding (M = Cr, Mo, and W) in [CpM(CO)3]2: Covalent single bond or noncovalent interaction?
journal, October 2014


The decomposition of formic acid catalysed by soluble metal complexes
journal, January 1967


Preparation and structural characterization of trirubidium octachlorodimolybdenum. A binuclear structure with strong metal-metal bonding
journal, May 1969

  • Bennett, Michael John; Brencic, Jurij V.; Cotton, F. Albert
  • Inorganic Chemistry, Vol. 8, Issue 5
  • DOI: 10.1021/ic50075a008

Hydrogen Generation at Ambient Conditions: Application in Fuel Cells
journal, September 2008


Selective Formic Acid Decomposition for High-Pressure Hydrogen Generation: A Mechanistic Study
journal, February 2009

  • Fellay, Céline; Yan, Ning; Dyson, Paul J.
  • Chemistry - A European Journal, Vol. 15, Issue 15
  • DOI: 10.1002/chem.200801824

Interconversion of CO2/H2 and Formic Acid Under Mild Conditions in Water
book, January 2014


Bond order and valence indices: A personal account
journal, January 2006

  • Mayer, I.
  • Journal of Computational Chemistry, Vol. 28, Issue 1
  • DOI: 10.1002/jcc.20494

On the Usefulness of Bond Orders and Overlap Populations to Chalcogen-Nitrogen Systems
journal, January 2006

  • Oláh, Julianna; Blockhuys, Frank; Veszprémi, Tamás
  • European Journal of Inorganic Chemistry, Vol. 2006, Issue 1
  • DOI: 10.1002/ejic.200500489

The Isolation of [Pd{OC(O)H}(H)(NHC)(PR 3 )] (NHC = N-Heterocyclic Carbene) and Its Role in Alkene and Alkyne Reductions Using Formic Acid
journal, January 2013

  • Broggi, Julie; Jurčík, Václav; Songis, Olivier
  • Journal of the American Chemical Society, Vol. 135, Issue 12
  • DOI: 10.1021/ja311087c

A Pseudo-Jahn−Teller Distortion in an Mo 22 -O) 2 Ring Having the Shortest Mo IV −Mo IV Double Bond
journal, March 2002

  • Cotton, F. Albert; Daniels, Lee M.; Murillo, Carlos A.
  • Journal of the American Chemical Society, Vol. 124, Issue 12
  • DOI: 10.1021/ja025713r

The Preparation and Crystal Structure of Dimolybdenum Tetraformate; Photoelectron Spectra of this and Several Other Dimolybdenum Tetracarboxylates
journal, September 1976

  • Cotton, F. Albert; Norman, Joe G.; Stults, B. Ray
  • Journal of Coordination Chemistry, Vol. 5, Issue 4
  • DOI: 10.1080/00958977608073014

Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi
journal, January 1985

  • Wadt, Willard R.; Hay, P. Jeffrey
  • The Journal of Chemical Physics, Vol. 82, Issue 1
  • DOI: 10.1063/1.448800

The heats of hydrogenation of the metal—metal bonded complexes [M(CO)3C5H5]2 (M = Cr, Mo, W)
journal, March 1985


Carbon dioxide and formic acid—the couple for environmental-friendly hydrogen storage?
journal, January 2010

  • Enthaler, Stephan; von Langermann, Jan; Schmidt, Thomas
  • Energy & Environmental Science, Vol. 3, Issue 9
  • DOI: 10.1039/b907569k

Heterogeneous Catalytic Generation of Hydrogen from Formic Acid under Pressurized Aqueous Conditions
journal, March 2012

  • Ting, Siu-Wa; Hu, Chaoquan; Pulleri, Jayasree K.
  • Industrial & Engineering Chemistry Research, Vol. 51, Issue 13
  • DOI: 10.1021/ie2030079

A Strong Metal-to-Metal Interaction in an Edge-Sharing Bioctahedral Compound that Leads to a Very Short Tungsten–Tungsten Double Bond
journal, December 2013

  • Chiarella, Gina M.; Cotton, F. Albert; Murillo, Carlos A.
  • Inorganic Chemistry, Vol. 53, Issue 4
  • DOI: 10.1021/ic402992n

Isolation of Two Agostic Isomers of an Organometallic Cation: Different Structures and Colors
journal, July 2013

  • van der Eide, Edwin F.; Yang, Ping; Bullock, R. Morris
  • Angewandte Chemie International Edition, Vol. 52, Issue 39
  • DOI: 10.1002/anie.201305032

Theoretical analysis of the [Mn 2 (μ-oxo) 2 (μ-carboxylato) 2 ] + core
journal, January 2004

  • Petrie, Simon; Mukhopadhyay, Sumitra; Armstrong, William H.
  • Phys. Chem. Chem. Phys., Vol. 6, Issue 20
  • DOI: 10.1039/B407512A

The Cambridge Structural Database
journal, April 2016

  • Groom, Colin R.; Bruno, Ian J.; Lightfoot, Matthew P.
  • Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials, Vol. 72, Issue 2, p. 171-179
  • DOI: 10.1107/S2052520616003954

Hydrogen energy future with formic acid: a renewable chemical hydrogen storage system
journal, January 2016

  • Singh, Ashish Kumar; Singh, Suryabhan; Kumar, Abhinav
  • Catalysis Science & Technology, Vol. 6, Issue 1
  • DOI: 10.1039/C5CY01276G

Pentabenzylcyclopentadienyl molybdenum and tungsten hydrides: Syntheses, structures and electrochemistry of [MHCpBz(CO)2(L)] (L=CO, PMe3, PPh3)
journal, May 2010


Unprecedentedly High Formic Acid Dehydrogenation Activity on an Iridium Complex with an N , N ′-Diimine Ligand in Water
journal, July 2015

  • Wang, Zhijun; Lu, Sheng-Mei; Li, Jun
  • Chemistry - A European Journal, Vol. 21, Issue 36
  • DOI: 10.1002/chem.201502086

NMR Chemical Shifts of Trace Impurities: Common Laboratory Solvents, Organics, and Gases in Deuterated Solvents Relevant to the Organometallic Chemist
journal, May 2010

  • Fulmer, Gregory R.; Miller, Alexander J. M.; Sherden, Nathaniel H.
  • Organometallics, Vol. 29, Issue 9
  • DOI: 10.1021/om100106e

Application of the Covalent Bond Classification Method for the Teaching of Inorganic Chemistry
journal, April 2014

  • Green, Malcolm L. H.; Parkin, Gerard
  • Journal of Chemical Education, Vol. 91, Issue 6
  • DOI: 10.1021/ed400504f

Molecular structures and barriers to internal rotation in bis (.eta.5-cyclopentadienyl)hexacarbonylditungsten and its molybdenum analog
journal, May 1974

  • Adams, R. D.; Collins, D. M.; Cotton, F. A.
  • Inorganic Chemistry, Vol. 13, Issue 5
  • DOI: 10.1021/ic50135a015

The structures of metal-metal-bonded edge-sharing bioctahedral complexes
journal, January 1987


Discovering and understanding multiple metal-to-metal bonds
journal, June 1978


Efficient Hydrogen Liberation from Formic Acid Catalyzed by a Well-Defined Iron Pincer Complex under Mild Conditions
journal, May 2013

  • Zell, Thomas; Butschke, Burkhard; Ben-David, Yehoshoa
  • Chemistry - A European Journal, Vol. 19, Issue 25
  • DOI: 10.1002/chem.201301383

Catalytic mechanisms of hydrogen evolution with homogeneous and heterogeneous catalysts
journal, January 2011

  • Fukuzumi, Shunichi; Yamada, Yusuke; Suenobu, Tomoyoshi
  • Energy & Environmental Science, Vol. 4, Issue 8
  • DOI: 10.1039/c1ee01551f

Hydrogen-storage materials for mobile applications
journal, November 2001

  • Schlapbach, Louis; Züttel, Andreas
  • Nature, Vol. 414, Issue 6861
  • DOI: 10.1038/35104634

Reactions of the Carbyne-Bridged Radical Complex [Mo 25 -C 5 H 5 ) 2 (μ-CPh)(μ-PCy 2 )(μ-CO)] + with Bidentate Ligands Having E–H Bonds (E = O, S, N)
journal, February 2014

  • Alvarez, M. Angeles; García, M. Esther; Menéndez, Sonia
  • Organometallics, Vol. 33, Issue 5
  • DOI: 10.1021/om401192m

Solid-state isomerisation reactions of (η5-C5H4R)M(CO)2(PR3′)I (M=W, Mo; R=tBu, Me; R′=Ph, OiPr3)
journal, July 2004


Efficient Disproportionation of Formic Acid to Methanol Using Molecular Ruthenium Catalysts
journal, August 2014

  • Savourey, Solène; Lefèvre, Guillaume; Berthet, Jean-Claude
  • Angewandte Chemie International Edition, Vol. 53, Issue 39
  • DOI: 10.1002/anie.201405457

Structure of hexacarbonylbis(pentamethylcyclopentadienyl)dimolybdenum(Mo–Mo)
journal, March 1988

  • Clegg, W.; Compton, N. A.; Errington, R. J.
  • Acta Crystallographica Section C Crystal Structure Communications, Vol. 44, Issue 3
  • DOI: 10.1107/S0108270187011582

Chemical and Physical Solutions for Hydrogen Storage
journal, August 2009

  • Eberle, Ulrich; Felderhoff, Michael; Schüth, Ferdi
  • Angewandte Chemie International Edition, Vol. 48, Issue 36
  • DOI: 10.1002/anie.200806293

An efficient binuclear catalyst for decomposition of formic acid
journal, January 1998

  • Gao, Yuan; Kuncheria, Joshi; Puddephatt, Richard J.
  • Chemical Communications, Issue 21
  • DOI: 10.1039/a805789c

Electrochemical Studies of Complexes with Oxo- or Hydroxo-Bridged {Mo2(µ-SMe)3}+ Centers: Cleavage of the Oxygen Bridge and Generation of Substrate-Binding Sites
journal, April 2004

  • Le Hénanf, Marc; Le Roy, Christine; Muir, Kenneth W.
  • European Journal of Inorganic Chemistry, Vol. 2004, Issue 8
  • DOI: 10.1002/ejic.200300707

The Lengths of Molybdenum to Molybdenum Quadruple Bonds:  Correlations, Explanations, and Corrections
journal, May 2002

  • Cotton, F. Albert; Daniels, Lee M.; Hillard, Elizabeth A.
  • Inorganic Chemistry, Vol. 41, Issue 9
  • DOI: 10.1021/ic025508c

Potassium, rubidium and ammonium salts of μ-(formato-κ 2 O : O ′)-μ-oxido-bis[oxidobis(peroxido-κ 2 O , O ′)molybdate(VI)]
journal, December 2012

  • Takehara, Masaki; Hashimoto, Masato
  • Acta Crystallographica Section C Crystal Structure Communications, Vol. 69, Issue 1
  • DOI: 10.1107/S0108270112049803

The MoMo Quintuple Bond as a Ligand to Stabilize Transition-Metal Complexes
journal, June 2015

  • Lu, Duan-Yen; Chen, Peter P. -Y.; Kuo, Ting-Shen
  • Angewandte Chemie International Edition, Vol. 54, Issue 31
  • DOI: 10.1002/anie.201504414

The U.S. Department of Energy's National Hydrogen Storage Project: Progress towards meeting hydrogen-powered vehicle requirements
journal, February 2007


A Well-Defined Iron Catalyst for the Reduction of Bicarbonates and Carbon Dioxide to Formates, Alkyl Formates, and Formamides
journal, November 2010

  • Federsel, Christopher; Boddien, Albert; Jackstell, Ralf
  • Angewandte Chemie International Edition, Vol. 49, Issue 50
  • DOI: 10.1002/anie.201004263

A short history of SHELX
journal, December 2007

  • Sheldrick, George M.
  • Acta Crystallographica Section A Foundations of Crystallography, Vol. 64, Issue 1, p. 112-122
  • DOI: 10.1107/S0108767307043930

CO2-“Neutral” Hydrogen Storage Based on Bicarbonates and Formates
journal, May 2011

  • Boddien, Albert; Gärtner, Felix; Federsel, Christopher
  • Angewandte Chemie International Edition, Vol. 50, Issue 28
  • DOI: 10.1002/anie.201101995

Reversible CO 2 binding triggered by metal–ligand cooperation in a rhenium( i ) PNP pincer-type complex and the reaction with dihydrogen
journal, January 2014

  • Vogt, Matthias; Nerush, Alexander; Diskin-Posner, Yael
  • Chem. Sci., Vol. 5, Issue 5
  • DOI: 10.1039/c4sc00130c

Charge, bond order and valence in the ab initio SCF theory
journal, June 1985


Liquid-Phase Chemical Hydrogen Storage: Catalytic Hydrogen Generation under Ambient Conditions
journal, April 2010

  • Jiang , Hai-Long; Singh , Sanjay Kumar; Yan , Jun-Min
  • ChemSusChem, Vol. 3, Issue 5
  • DOI: 10.1002/cssc.201000023

Natural bond orbital analysis: A critical overview of relationships to alternative bonding perspectives
journal, July 2012

  • Weinhold, Frank
  • Journal of Computational Chemistry, Vol. 33, Issue 30
  • DOI: 10.1002/jcc.23060

A review on biomass-based hydrogen production for renewable energy supply: Biomass-based hydrogen production for renewable energy supply
journal, August 2015

  • Hosseini, Seyed Ehsan; Abdul Wahid, Mazlan; Jamil, M. M.
  • International Journal of Energy Research, Vol. 39, Issue 12
  • DOI: 10.1002/er.3381

Trimethylphosphan- und Carbonyl-hydrid-Halbsandwichkomplexe des Chroms, Molybdäns und Wolframs: C5Hf5−, C5Me5− und ein isoelektronischer 6e−-Sauerstof-Tripodligand im Vergleich
journal, September 1987

  • Alt, Helmut G.; Engelhardt, Heidi E.; Kläui, Wolfgang
  • Journal of Organometallic Chemistry, Vol. 331, Issue 3
  • DOI: 10.1016/0022-328X(87)80004-9

Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg
journal, January 1985

  • Hay, P. Jeffrey; Wadt, Willard R.
  • The Journal of Chemical Physics, Vol. 82, Issue 1
  • DOI: 10.1063/1.448799

Catalytic interconversion between hydrogen and formic acid at ambient temperature and pressure
journal, January 2012

  • Maenaka, Yuta; Suenobu, Tomoyoshi; Fukuzumi, Shunichi
  • Energy & Environmental Science, Vol. 5, Issue 6
  • DOI: 10.1039/c2ee03315a

Jaguar: A high-performance quantum chemistry software program with strengths in life and materials sciences
journal, July 2013

  • Bochevarov, Art D.; Harder, Edward; Hughes, Thomas F.
  • International Journal of Quantum Chemistry, Vol. 113, Issue 18
  • DOI: 10.1002/qua.24481

Carbon Dioxide-The Hydrogen-Storage Material of the Future?
journal, October 2008


Iron-Catalyzed Hydrogen Production from Formic Acid
journal, July 2010

  • Boddien, Albert; Loges, Björn; Gärtner, Felix
  • Journal of the American Chemical Society, Vol. 132, Issue 26
  • DOI: 10.1021/ja100925n

Further considerations on the structure and bonding in edge-sharing bioctahedral complexes
journal, October 1993


Structure of triammonium μ-formato-(O,O')-di-μ-oxo-bis[diformato(oxo)molybdate(V)]
journal, December 1987

  • Kamenar, B.; Penavić, M.; Marković, B.
  • Acta Crystallographica Section C Crystal Structure Communications, Vol. 43, Issue 12
  • DOI: 10.1107/S0108270187088085

Aluminium–ligand cooperation promotes selective dehydrogenation of formic acid to H 2 and CO 2
journal, January 2014


Reaktivität von Metall-Metall-Bindungen. Bildung und Zerfall einfacher Metallcarbonyl-Zweikernkomplexe als Gleichgewichtsreaktion
journal, August 1980


(Pentabenzylcyclopentadienyl)molybdenum Complexes: Synthesis, Structures and Redox Properties
journal, March 2007

  • Namorado, Sónia; Cui, Jinlan; de Azevedo, Cristina G.
  • European Journal of Inorganic Chemistry, Vol. 2007, Issue 8
  • DOI: 10.1002/ejic.200600777

A review on exergy comparison of hydrogen production methods from renewable energy sources
journal, January 2012

  • Christopher, Koroneos; Dimitrios, Rovas
  • Energy & Environmental Science, Vol. 5, Issue 5
  • DOI: 10.1039/c2ee01098d

Dehydrogenation, disproportionation and transfer hydrogenation reactions of formic acid catalyzed by molybdenum hydride compounds
journal, January 2015

  • Neary, Michelle C.; Parkin, Gerard
  • Chemical Science, Vol. 6, Issue 3
  • DOI: 10.1039/C4SC03128H

Hydrogen from renewable electricity: An international review of power-to-gas pilot plants for stationary applications
journal, February 2013


Hydrogen Storage and Delivery: The Carbon Dioxide – Formic Acid Couple
journal, September 2011


Metal-metal bonding in pentamethylcyclopentadienylmolybdenum(IV) dinuclear compounds: chloride abstraction from non-bonded Cp∗2Mo2Cl6 to afford bonded [Cp∗2Mo2Cl5]+
journal, February 1995


On bond orders and valences in theAb initio quantum chemical theory
journal, January 1986


A series of edge-sharing bioctahedral, M-M bonded molecules: nonmonotonic bond length variation and its interpretation
journal, March 1986

  • Chakravarty, Akhil R.; Cotton, F. Albert.; Diebold, Michael P.
  • Journal of the American Chemical Society, Vol. 108, Issue 5
  • DOI: 10.1021/ja00265a022

Catalytic Disproportionation of Formic Acid to Generate Methanol
journal, February 2013

  • Miller, Alexander J. M.; Heinekey, D. Michael; Mayer, James M.
  • Angewandte Chemie International Edition, Vol. 52, Issue 14
  • DOI: 10.1002/anie.201208470

Catalytic Generation of Hydrogen from Formic acid and its Derivatives: Useful Hydrogen Storage Materials
journal, May 2010


Metal-free dehydrogenation of formic acid to H 2 and CO 2 using boron-based catalysts
journal, January 2015

  • Chauvier, Clément; Tlili, Anis; Das Neves Gomes, Christophe
  • Chemical Science, Vol. 6, Issue 5
  • DOI: 10.1039/C5SC00394F

What Do We Know about the Metal-Metal Bond?
journal, June 1978

  • Vahrenkamp, Heinrich
  • Angewandte Chemie International Edition in English, Vol. 17, Issue 6
  • DOI: 10.1002/anie.197803793

The electronic structure of some polyenes and aromatic molecules. VII. Bonds of fractional order by the molecular orbital method
journal, February 1939

  • Coulson, Charles Alfred
  • Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, Vol. 169, Issue 938, p. 413-428
  • DOI: 10.1098/rspa.1939.0006

Photocatalytic Formic Acid Conversion on CdS Nanocrystals with Controllable Selectivity for H 2 or CO
journal, July 2015

  • Kuehnel, Moritz F.; Wakerley, David W.; Orchard, Katherine L.
  • Angewandte Chemie International Edition, Vol. 54, Issue 33
  • DOI: 10.1002/anie.201502773