skip to main content


Title: Intragranular cracking as a critical barrier for high-voltage usage of layer-structured cathode for lithium-ion batteries

LiNi 1/3Mn 1/3Co 1/3O 2 (NMC333) layered cathode is often fabricated as secondary particles of consisting of densely packed primary particles, which offers advantage of high energy density and alleviation of cathode side reactions/corrosions, but introduces other drawbacks, such as intergranular cracking. Here, we report unexpected observations on the nucleation and growth of intragranular cracks in the commercial NMC333 layered cathode by using advanced S/TEM. We found that the formation of the intragranular cracks is directly associated with high voltage cycling, which is an electrochemically driven and diffusion controlled process. The intragranular cracks were noticed to be characteristically initiated from grain interior, a consequence of dislocation based crack incubation mechanism. This observation is in sharp contrast with the general theoretical models, predicting the initiation of intragranular cracks from grain boundaries or particle surface. As a result, our study indicates that maintain a structural stability is the key step toward high voltage operation of layered cathode materials.
 [1] ;  [1] ;  [1] ;  [1] ; ORCiD logo [1] ;  [1]
  1. Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Publication Date:
Report Number(s):
Journal ID: ISSN 2041-1723; 48379; KP1704020
Grant/Contract Number:
Accepted Manuscript
Journal Name:
Nature Communications
Additional Journal Information:
Journal Volume: 8; Journal ID: ISSN 2041-1723
Nature Publishing Group
Research Org:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab. (EMSL)
Sponsoring Org:
Country of Publication:
United States
25 ENERGY STORAGE; lithium ion battery; layered cathode; high voltage cycling; intragranular crack; dislocation; Environmental Molecular Sciences Laboratory; batteries; electrochemistry
OSTI Identifier: