skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Transition metal dissolution, ion migration, electrocatalytic reduction and capacity loss in Lithium-ion full cells

Abstract

Continuous operation of full cells with layered transition metal (TM) oxide positive electrodes (NCM523) leads to dissolution of TM ions and their migration and incorporation into the solid electrolyte interphase (SEI) of the graphite-based negative electrode. These processes correlate with cell capacity fade and accelerate markedly as the upper cutoff voltage (UCV) exceeds 4.30 V. At voltages ≥ 4.4 V there is enhanced fracture of the oxide during cycling that creates new surfaces and causes increased solvent oxidation and TM dissolution. Despite this deterioration, cell capacity fade still mainly results from lithium loss in the negative electrode SEI. Among TMs, Mn content in the SEI shows a better correlation with cell capacity loss than Co and Ni contents. As Mn ions become incorporated into the SEI, the kinetics of lithium trapping change from power to linear at the higher UCVs, indicating a large effect of these ions on SEI growth and implicating (electro)catalytic reactions. Lastly, we estimate that each Mn II ion deposited in the SEI causes trapping of ~10 2 additional Li + ions thereby hastening the depletion of cyclable lithium ions. Using these results, we sketch a mechanism for cell capacity fade, emphasizing the conceptual picture over themore » chemical detail.« less

Authors:
 [1];  [1];  [1]
  1. Argonne National Lab. (ANL), Argonne, IL (United States)
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office (EE-3V)
OSTI Identifier:
1339642
Grant/Contract Number:  
AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
Journal of the Electrochemical Society
Additional Journal Information:
Journal Volume: 164; Journal Issue: 2; Journal ID: ISSN 0013-4651
Publisher:
The Electrochemical Society
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; NCA; NCM523 oxide; SEI; electrochemistry; graphite; high voltage; layered oxides; manganese; nickel

Citation Formats

Gilbert, James A., Shkrob, Ilya A., and Abraham, Daniel P. Transition metal dissolution, ion migration, electrocatalytic reduction and capacity loss in Lithium-ion full cells. United States: N. p., 2017. Web. doi:10.1149/2.1111702jes.
Gilbert, James A., Shkrob, Ilya A., & Abraham, Daniel P. Transition metal dissolution, ion migration, electrocatalytic reduction and capacity loss in Lithium-ion full cells. United States. doi:10.1149/2.1111702jes.
Gilbert, James A., Shkrob, Ilya A., and Abraham, Daniel P. Thu . "Transition metal dissolution, ion migration, electrocatalytic reduction and capacity loss in Lithium-ion full cells". United States. doi:10.1149/2.1111702jes. https://www.osti.gov/servlets/purl/1339642.
@article{osti_1339642,
title = {Transition metal dissolution, ion migration, electrocatalytic reduction and capacity loss in Lithium-ion full cells},
author = {Gilbert, James A. and Shkrob, Ilya A. and Abraham, Daniel P.},
abstractNote = {Continuous operation of full cells with layered transition metal (TM) oxide positive electrodes (NCM523) leads to dissolution of TM ions and their migration and incorporation into the solid electrolyte interphase (SEI) of the graphite-based negative electrode. These processes correlate with cell capacity fade and accelerate markedly as the upper cutoff voltage (UCV) exceeds 4.30 V. At voltages ≥ 4.4 V there is enhanced fracture of the oxide during cycling that creates new surfaces and causes increased solvent oxidation and TM dissolution. Despite this deterioration, cell capacity fade still mainly results from lithium loss in the negative electrode SEI. Among TMs, Mn content in the SEI shows a better correlation with cell capacity loss than Co and Ni contents. As Mn ions become incorporated into the SEI, the kinetics of lithium trapping change from power to linear at the higher UCVs, indicating a large effect of these ions on SEI growth and implicating (electro)catalytic reactions. Lastly, we estimate that each MnII ion deposited in the SEI causes trapping of ~102 additional Li+ ions thereby hastening the depletion of cyclable lithium ions. Using these results, we sketch a mechanism for cell capacity fade, emphasizing the conceptual picture over the chemical detail.},
doi = {10.1149/2.1111702jes},
journal = {Journal of the Electrochemical Society},
number = 2,
volume = 164,
place = {United States},
year = {2017},
month = {1}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 17 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Recent progress in cathode materials research for advanced lithium ion batteries
journal, May 2012

  • Xu, Bo; Qian, Danna; Wang, Ziying
  • Materials Science and Engineering: R: Reports, Vol. 73, Issue 5-6
  • DOI: 10.1016/j.mser.2012.05.003

Building better batteries
journal, February 2008

  • Armand, M.; Tarascon, J.-M.
  • Nature, Vol. 451, Issue 7179, p. 652-657
  • DOI: 10.1038/451652a

Issues and challenges facing rechargeable lithium batteries
journal, November 2001

  • Tarascon, J.-M.; Armand, M.
  • Nature, Vol. 414, Issue 6861, p. 359-367
  • DOI: 10.1038/35104644

Layered Li[Ni[sub x]Co[sub 1−2x]Mn[sub x]]O[sub 2] Cathode Materials for Lithium-Ion Batteries
journal, January 2001

  • Lu, Zhonghua; MacNeil, D. D.; Dahn, J. R.
  • Electrochemical and Solid-State Letters, Vol. 4, Issue 12
  • DOI: 10.1149/1.1413182

Layered Lithium Insertion Material of LiNi 1/2 Mn 1/2 O 2 : A Possible Alternative to LiCoO 2 for Advanced Lithium-Ion Batteries
journal, August 2001

  • Ohzuku, Tsutomu; Makimura, Yoshinari
  • Chemistry Letters, Vol. 30, Issue 8
  • DOI: 10.1246/cl.2001.744

Fundamental degradation mechanisms of layered oxide Li-ion battery cathode materials: Methodology, insights and novel approaches
journal, February 2015


Understanding the Degradation Mechanisms of LiNi 0.5 Co 0.2 Mn 0.3 O 2 Cathode Material in Lithium Ion Batteries
journal, August 2013

  • Jung, Sung-Kyun; Gwon, Hyeokjo; Hong, Jihyun
  • Advanced Energy Materials, Vol. 4, Issue 1
  • DOI: 10.1002/aenm.201300787

Voltage Fade of Layered Oxides: Its Measurement and Impact on Energy Density
journal, January 2013

  • Bettge, Martin; Li, Yan; Gallagher, Kevin
  • Journal of The Electrochemical Society, Vol. 160, Issue 11
  • DOI: 10.1149/2.034311jes

A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries
journal, September 2010


Li + -solvation/desolvation dictates interphasial processes on graphitic anode in Li ion cells
journal, August 2012

  • Xu, Kang; von Wald Cresce, Arthur
  • Journal of Materials Research, Vol. 27, Issue 18
  • DOI: 10.1557/jmr.2012.104

Main aging mechanisms in Li ion batteries
journal, August 2005


Failure Mechanism of Graphite/LiNi 0.5 Mn 1.5 O 4 Cells at High Voltage and Elevated Temperature
journal, January 2013

  • Lu, Dongsheng; Xu, Mengqing; Zhou, Liu
  • Journal of The Electrochemical Society, Vol. 160, Issue 5
  • DOI: 10.1149/2.022305jes

Precision Measurements of the Coulombic Efficiency of Lithium-Ion Batteries and of Electrode Materials for Lithium-Ion Batteries
journal, January 2010

  • Smith, A. J.; Burns, J. C.; Trussler, S.
  • Journal of The Electrochemical Society, Vol. 157, Issue 2
  • DOI: 10.1149/1.3268129

Electrocatalysis Paradigm for Protection of Cathode Materials in High-Voltage Lithium-Ion Batteries
journal, July 2016

  • Shkrob, Ilya A.; Abraham, Daniel P.
  • The Journal of Physical Chemistry C, Vol. 120, Issue 28
  • DOI: 10.1021/acs.jpcc.6b05756

First-Principles Modeling of the Initial Stages of Organic Solvent Decomposition on Li x Mn 2 O 4 (100) Surfaces
journal, April 2012

  • Leung, Kevin
  • The Journal of Physical Chemistry C, Vol. 116, Issue 18
  • DOI: 10.1021/jp212415x

Ageing mechanisms in lithium-ion batteries
journal, September 2005


Allotropic Control: How Certain Fluorinated Carbonate Electrolytes Protect Aluminum Current Collectors by Promoting the Formation of Insoluble Coordination Polymers
journal, August 2016

  • Shkrob, Ilya A.; Pupek, Krzysztof Z.; Abraham, Daniel P.
  • The Journal of Physical Chemistry C, Vol. 120, Issue 33
  • DOI: 10.1021/acs.jpcc.6b05241

Current Collectors for Positive Electrodes of Lithium-Based Batteries
journal, January 2005

  • Whitehead, Adam H.; Schreiber, Martha
  • Journal of The Electrochemical Society, Vol. 152, Issue 11
  • DOI: 10.1149/1.2039587

Electrochemical behavior and passivation of current collectors in lithium-ion batteries
journal, January 2011

  • Myung, Seung-Taek; Hitoshi, Yashiro; Sun, Yang-Kook
  • Journal of Materials Chemistry, Vol. 21, Issue 27
  • DOI: 10.1039/c0jm04353b

Dissolution of Spinel Oxides and Capacity Losses in 4V Li / LixMn2O4 Cells
journal, January 1996

  • Jang, Dong H.; Shin, Young J.; Oh, Seung M.
  • Journal of The Electrochemical Society, Vol. 143, Issue 7, p. 2204-2211
  • DOI: 10.1149/1.1836981

Effect of Manganese Contamination on the Solid-Electrolyte-Interphase Properties in Li-Ion Batteries
journal, January 2013

  • Delacourt, C.; Kwong, A.; Liu, X.
  • Journal of The Electrochemical Society, Vol. 160, Issue 8
  • DOI: 10.1149/2.035308jes

Multilayer electrolyte cell: A new tool for identifying electrochemical performances of high voltage cathode materials
journal, July 2013

  • MahootcheianAsl, Nina; Kim, Jung-Hyun; Pieczonka, Nicholas P. W.
  • Electrochemistry Communications, Vol. 32
  • DOI: 10.1016/j.elecom.2013.03.031

Influence of manganese(II), cobalt(II), and nickel(II) additives in electrolyte on performance of graphite anode for lithium-ion batteries
journal, February 2002


Influence of Manganese Dissolution on the Degradation of Surface Films on Edge Plane Graphite Negative-Electrodes in Lithium-Ion Batteries
journal, January 2012

  • Ochida, Manabu; Domi, Yasuhiro; Doi, Takayuki
  • Journal of The Electrochemical Society, Vol. 159, Issue 7
  • DOI: 10.1149/2.031207jes

Capacity Fading of Graphite Electrodes Due to the Deposition of Manganese Ions on Them in Li-Ion Batteries
journal, January 2002

  • Tsunekawa, Hajime; Tanimoto,a, Satoshi; Marubayashi, Ryoji
  • Journal of The Electrochemical Society, Vol. 149, Issue 10
  • DOI: 10.1149/1.1502686

Degradation of the solid electrolyte interphase induced by the deposition of manganese ions
journal, June 2015


Oxidation state of cross-over manganese species on the graphite electrode of lithium-ion cells
journal, January 2014

  • Gowda, Sanketh R.; Gallagher, Kevin G.; Croy, Jason R.
  • Physical Chemistry Chemical Physics, Vol. 16, Issue 15
  • DOI: 10.1039/c4cp00764f

Mn(II) deposition on anodes and its effects on capacity fade in spinel lithium manganate–carbon systems
journal, September 2013

  • Zhan, Chun; Lu, Jun; Jeremy Kropf, A.
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms3437

Manganese in Graphite Anode and Capacity Fade in Li Ion Batteries
journal, October 2014

  • Shkrob, Ilya A.; Kropf, A. Jeremy; Marin, Timothy W.
  • The Journal of Physical Chemistry C, Vol. 118, Issue 42
  • DOI: 10.1021/jp507833u

The Formation Mechanism of Fluorescent Metal Complexes at the Li x Ni 0.5 Mn 1.5 O 4−δ /Carbonate Ester Electrolyte Interface
journal, March 2015

  • Jarry, Angélique; Gottis, Sébastien; Yu, Young-Sang
  • Journal of the American Chemical Society, Vol. 137, Issue 10
  • DOI: 10.1021/ja5116698

Study of Mn dissolution from LiMn2O4 spinel electrodes using in situ total reflection X-ray fluorescence analysis and fluorescence XAFS technique
journal, July 2001


Cycling Behavior of NCM523/Graphite Lithium-Ion Cells in the 3–4.4 V Range: Diagnostic Studies of Full Cells and Harvested Electrodes
journal, September 2016

  • Gilbert, James A.; Bareño, Javier; Spila, Timothy
  • Journal of The Electrochemical Society, Vol. 164, Issue 1
  • DOI: 10.1149/2.0081701jes

Review—Post-Mortem Analysis of Aged Lithium-Ion Batteries: Disassembly Methodology and Physico-Chemical Analysis Techniques
journal, January 2016

  • Waldmann, Thomas; Iturrondobeitia, Amaia; Kasper, Michael
  • Journal of The Electrochemical Society, Vol. 163, Issue 10
  • DOI: 10.1149/2.1211609jes

A High Precision Coulometry Study of the SEI Growth in Li/Graphite Cells
journal, January 2011

  • Smith, A. J.; Burns, J. C.; Zhao, Xuemei
  • Journal of The Electrochemical Society, Vol. 158, Issue 5
  • DOI: 10.1149/1.3557892

Theory of SEI Formation in Rechargeable Batteries: Capacity Fade, Accelerated Aging and Lifetime Prediction
journal, December 2012

  • Pinson, Matthew B.; Bazant, Martin Z.
  • Journal of The Electrochemical Society, Vol. 160, Issue 2
  • DOI: 10.1149/2.044302jes

Aging mechanism in Li ion cells and calendar life predictions
journal, July 2001


Solvent Diffusion Model for Aging of Lithium-Ion Battery Cells
journal, January 2004

  • Ploehn, Harry J.; Ramadass, Premanand; White, Ralph E.
  • Journal of The Electrochemical Society, Vol. 151, Issue 3
  • DOI: 10.1149/1.1644601

Conduction in Polymers: Dynamic Disorder Transport
journal, February 1994

  • Nitzan, Abraham; Ratner, Mark A.
  • The Journal of Physical Chemistry, Vol. 98, Issue 7
  • DOI: 10.1021/j100058a009

Electrode Behavior RE-Visited: Monitoring Potential Windows, Capacity Loss, and Impedance Changes in Li 1.03 (Ni 0.5 Co 0.2 Mn 0.3 ) 0.97 O 2 /Silicon-Graphite Full Cells
journal, January 2016

  • Klett, Matilda; Gilbert, James A.; Trask, Stephen E.
  • Journal of The Electrochemical Society, Vol. 163, Issue 6
  • DOI: 10.1149/2.0271606jes

Differential voltage analyses of high-power, lithium-ion cells
journal, January 2005


Differential voltage analyses of high-power lithium-ion cells
journal, January 2005


Differential voltage analyses of high-power lithium-ion cells
journal, June 2006


Long-Term Low-Rate Cycling of LiCoO 2 /Graphite Li-Ion Cells at 55°C
journal, January 2012

  • Smith, A. J.; Dahn, Hannah M.; Burns, J. C.
  • Journal of The Electrochemical Society, Vol. 159, Issue 6
  • DOI: 10.1149/2.056206jes

Observation of Microstructural Evolution in Li Battery Cathode Oxide Particles by In Situ Electron Microscopy
journal, May 2013

  • Miller, Dean J.; Proff, Christian; Wen, J. G.
  • Advanced Energy Materials, Vol. 3, Issue 8
  • DOI: 10.1002/aenm.201300015

Microstructural Evolution in Transition-metal-oxide Cathode Materials for Lithium-Ion Batteries
journal, July 2016

  • Miller, Dean J.; Sheng, Huaping; Wang, Lifen
  • Microscopy and Microanalysis, Vol. 22, Issue S3
  • DOI: 10.1017/S1431927616007340

Understanding Transition-Metal Dissolution Behavior in LiNi 0.5 Mn 1.5 O 4 High-Voltage Spinel for Lithium Ion Batteries
journal, July 2013

  • Pieczonka, Nicholas P. W.; Liu, Zhongyi; Lu, Peng
  • The Journal of Physical Chemistry C, Vol. 117, Issue 31
  • DOI: 10.1021/jp405158m

Consequences of Electrolyte Degradation for the Electrochemical Performance of Li 1+x (Ni a Co b Mn 1-a-b ) 1-x O 2
journal, January 2015

  • Peng, H. -J.; Urbonaite, S.; Villevieille, C.
  • Journal of The Electrochemical Society, Vol. 162, Issue 13
  • DOI: 10.1149/2.0061513jes

Microscopy and Spectroscopy of Lithium Nickel Oxide-Based Particles Used in High Power Lithium-Ion Cells
journal, January 2003

  • Abraham, D. P.; Twesten, R. D.; Balasubramanian, M.
  • Journal of The Electrochemical Society, Vol. 150, Issue 11
  • DOI: 10.1149/1.1613291

Surface changes on LiNi0.8Co0.2O2 particles during testing of high-power lithium-ion cells
journal, August 2002


Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries
journal, October 2004


Electrolytes and Interphases in Li-Ion Batteries and Beyond
journal, October 2014


Lithium Ion Battery Graphite Solid Electrolyte Interphase Revealed by Microscopy and Spectroscopy
journal, January 2013

  • Nie, Mengyun; Chalasani, Dinesh; Abraham, Daniel P.
  • The Journal of Physical Chemistry C, Vol. 117, Issue 3, p. 1257-1267
  • DOI: 10.1021/jp3118055

Reduction of Carbonate Electrolytes and the Formation of Solid-Electrolyte Interface (SEI) in Lithium-Ion Batteries. 2. Radiolytically Induced Polymerization of Ethylene Carbonate
journal, September 2013

  • Shkrob, Ilya A.; Zhu, Ye; Marin, Timothy W.
  • The Journal of Physical Chemistry C, Vol. 117, Issue 38, p. 19270-19279
  • DOI: 10.1021/jp406273p

Mass Spectrometry Investigations on Electrolyte Degradation Products for the Development of Nanocomposite Electrodes in Lithium Ion Batteries
journal, June 2006

  • Gireaud, Laurent; Grugeon, Sylvie; Pilard, Serge
  • Analytical Chemistry, Vol. 78, Issue 11
  • DOI: 10.1021/ac051987w

Deciphering the multi-step degradation mechanisms of carbonate-based electrolyte in Li batteries
journal, March 2008


Identification of Li Battery Electrolyte Degradation Products Through Direct Synthesis and Characterization of Alkyl Carbonate Salts
journal, January 2005

  • Gireaud, L.; Grugeon, S.; Laruelle, S.
  • Journal of The Electrochemical Society, Vol. 152, Issue 5
  • DOI: 10.1149/1.1872673

Dynamics and morphology of solid electrolyte interphase (SEI)
journal, January 2016

  • Single, Fabian; Horstmann, Birger; Latz, Arnulf
  • Physical Chemistry Chemical Physics, Vol. 18, Issue 27
  • DOI: 10.1039/C6CP02816K

Failure and Stabilization Mechanisms of Graphite Electrodes
journal, March 1997

  • Aurbach, Doron; Levi, Mikhail D.; Levi, Elena
  • The Journal of Physical Chemistry B, Vol. 101, Issue 12
  • DOI: 10.1021/jp962815t

Direct Calculation of Li-Ion Transport in the Solid Electrolyte Interphase
journal, September 2012

  • Shi, Siqi; Lu, Peng; Liu, Zhongyi
  • Journal of the American Chemical Society, Vol. 134, Issue 37
  • DOI: 10.1021/ja305366r

Computational Exploration of the Li-Electrode|Electrolyte Interface in the Presence of a Nanometer Thick Solid-Electrolyte Interphase Layer
journal, September 2016


Interfacial Structure and Dynamics of the Lithium Alkyl Dicarbonate SEI Components in Contact with the Lithium Battery Electrolyte
journal, July 2014

  • Borodin, Oleg; Bedrov, Dmitry
  • The Journal of Physical Chemistry C, Vol. 118, Issue 32
  • DOI: 10.1021/jp504598n

Silicon Solid Electrolyte Interphase (SEI) of Lithium Ion Battery Characterized by Microscopy and Spectroscopy
journal, June 2013

  • Nie, Mengyun; Abraham, Daniel P.; Chen, Yanjing
  • The Journal of Physical Chemistry C, Vol. 117, Issue 26
  • DOI: 10.1021/jp404155y

A New Perspective on the Formation and Structure of the Solid Electrolyte Interface at the Graphite Anode of Li-Ion Cells
journal, January 1999

  • Ein-Eli, Yair
  • Electrochemical and Solid-State Letters, Vol. 2, Issue 5
  • DOI: 10.1149/1.1390787

Modeling detailed chemistry and transport for solid-electrolyte-interface (SEI) films in Li–ion batteries
journal, December 2011


Formation and Growth Mechanisms of Solid-Electrolyte Interphase Layers in Rechargeable Batteries
journal, November 2015


In Situ and Quantitative Characterization of Solid Electrolyte Interphases
journal, February 2014

  • Cresce, Arthur v.; Russell, Selena M.; Baker, David R.
  • Nano Letters, Vol. 14, Issue 3
  • DOI: 10.1021/nl404471v

Chemistry, Impedance, and Morphology Evolution in Solid Electrolyte Interphase Films during Formation in Lithium Ion Batteries
journal, December 2013

  • Lu, Peng; Li, Chen; Schneider, Eric W.
  • The Journal of Physical Chemistry C, Vol. 118, Issue 2
  • DOI: 10.1021/jp4111019

Ab initio molecular dynamics simulations of the initial stages of solid–electrolyte interphase formation on lithium ion battery graphitic anodes
journal, January 2010

  • Leung, Kevin; Budzien, Joanne L.
  • Physical Chemistry Chemical Physics, Vol. 12, Issue 25
  • DOI: 10.1039/b925853a

Molecular Dynamics Simulations of Lithium Alkyl Carbonates
journal, November 2006

  • Borodin, Oleg; Smith, Grant D.; Fan, Peng
  • The Journal of Physical Chemistry B, Vol. 110, Issue 45
  • DOI: 10.1021/jp0639142

Molecular Dynamics Simulations and Experimental Study of Lithium Ion Transport in Dilithium Ethylene Dicarbonate
journal, April 2013

  • Borodin, Oleg; Zhuang, Guorong V.; Ross, Philip N.
  • The Journal of Physical Chemistry C, Vol. 117, Issue 15
  • DOI: 10.1021/jp4000494

Solubility of Lithium Salts Formed on the Lithium-Ion Battery Negative Electrode Surface in Organic Solvents
journal, January 2009

  • Tasaki, Ken; Goldberg, Alex; Lian, Jian-Jie
  • Journal of The Electrochemical Society, Vol. 156, Issue 12
  • DOI: 10.1149/1.3239850

Understanding Long-Term Cycling Performance of Li 1.2 Ni 0.15 Mn 0.55 Co 0.1 O 2 –Graphite Lithium-Ion Cells
journal, January 2013

  • Li, Y.; Bettge, M.; Polzin, B.
  • Journal of The Electrochemical Society, Vol. 160, Issue 5
  • DOI: 10.1149/2.002305jes

    Works referencing / citing this record:

    Interphases in Electroactive Suspension Systems: Where Chemistry Meets Mesoscale Physics
    journal, April 2019


    Interphases in Electroactive Suspension Systems: Where Chemistry Meets Mesoscale Physics
    journal, July 2019