skip to main content

DOE PAGESDOE PAGES

Title: Pink-beam focusing with a one-dimensional compound refractive lens

The performance of a cooled Be compound refractive lens (CRL) has been tested at the Advanced Photon Source (APS) to enable vertical focusing of the pink beam and permit the X-ray beam to spatially overlap with an 80 µm-high low-density plasma that simulates astrophysical environments. Focusing the fundamental harmonics of an insertion device white beam increases the APS power density; here, a power density as high as 500 W mm –2 was calculated. A CRL is chromatic so it does not efficiently focus X-rays whose energies are above the fundamental. Only the fundamental of the undulator focuses at the experiment. A two-chopper system reduces the power density on the imaging system and lens by four orders of magnitude, enabling imaging of the focal plane without any X-ray filter. As a result, a method to measure such high power density as well as the performance of the lens in focusing the pink beam is reported.
Authors:
 [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1]
  1. Argonne National Lab. (ANL), Argonne, IL (United States)
Publication Date:
Grant/Contract Number:
AC02-06CH11357
Type:
Accepted Manuscript
Journal Name:
Journal of Synchrotron Radiation (Online)
Additional Journal Information:
Journal Name: Journal of Synchrotron Radiation (Online); Journal Volume: 23; Journal Issue: 5; Journal ID: ISSN 1600-5775
Publisher:
International Union of Crystallography
Research Org:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22). Scientific User Facilities Division
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; chromatic aberration; compound refractive lenses; pink beam
OSTI Identifier:
1339451

Dufresne, Eric M., Dunford, Robert W., Kanter, Elliot P., Gao, Yuan, Moon, Seoksu, Walko, Donald A., and Zhang, Xusheng. Pink-beam focusing with a one-dimensional compound refractive lens. United States: N. p., Web. doi:10.1107/S1600577516009310.
Dufresne, Eric M., Dunford, Robert W., Kanter, Elliot P., Gao, Yuan, Moon, Seoksu, Walko, Donald A., & Zhang, Xusheng. Pink-beam focusing with a one-dimensional compound refractive lens. United States. doi:10.1107/S1600577516009310.
Dufresne, Eric M., Dunford, Robert W., Kanter, Elliot P., Gao, Yuan, Moon, Seoksu, Walko, Donald A., and Zhang, Xusheng. 2016. "Pink-beam focusing with a one-dimensional compound refractive lens". United States. doi:10.1107/S1600577516009310. https://www.osti.gov/servlets/purl/1339451.
@article{osti_1339451,
title = {Pink-beam focusing with a one-dimensional compound refractive lens},
author = {Dufresne, Eric M. and Dunford, Robert W. and Kanter, Elliot P. and Gao, Yuan and Moon, Seoksu and Walko, Donald A. and Zhang, Xusheng},
abstractNote = {The performance of a cooled Be compound refractive lens (CRL) has been tested at the Advanced Photon Source (APS) to enable vertical focusing of the pink beam and permit the X-ray beam to spatially overlap with an 80 µm-high low-density plasma that simulates astrophysical environments. Focusing the fundamental harmonics of an insertion device white beam increases the APS power density; here, a power density as high as 500 W mm–2 was calculated. A CRL is chromatic so it does not efficiently focus X-rays whose energies are above the fundamental. Only the fundamental of the undulator focuses at the experiment. A two-chopper system reduces the power density on the imaging system and lens by four orders of magnitude, enabling imaging of the focal plane without any X-ray filter. As a result, a method to measure such high power density as well as the performance of the lens in focusing the pink beam is reported.},
doi = {10.1107/S1600577516009310},
journal = {Journal of Synchrotron Radiation (Online)},
number = 5,
volume = 23,
place = {United States},
year = {2016},
month = {7}
}