skip to main content


Title: Gradient elution moving boundary electrophoresis enables rapid analysis of acids in complex biomass-derived streams

Biomass conversion processes such as pretreatment, liquefaction, and pyrolysis often produce complex mixtures of intermediates that are a substantial challenge to analyze rapidly and reliably. To characterize these streams more comprehensively and efficiently, new techniques are needed to track species through biomass deconstruction and conversion processes. Here, we present the application of an emerging analytical method, gradient elution moving boundary electrophoresis (GEMBE), to quantify a suite of acids in a complex, biomass-derived streams from alkaline pretreatment of corn stover. GEMBE offers distinct advantages over common chromatography-spectrometry analytical approaches in terms of analysis time, sample preparation requirements, and cost of equipment. As demonstrated here, GEMBE is able to track 17 distinct compounds (oxalate, formate, succinate, malate, acetate, glycolate, protocatechuate, 3-hydroxypropanoate, lactate, glycerate, 2-hydroxybutanoate, 4-hydroxybenzoate, vanillate, p-coumarate, ferulate, sinapate, and acetovanillone). The lower limit of detection was compound dependent and ranged between 0.9 and 3.5 umol/L. Results from GEMBE were similar to recent results from an orthogonal method based on GCxGC-TOF/MS. Altogether, GEMBE offers a rapid, robust approach to analyze complex biomass-derived samples, and given the ease and convenience of deployment, may offer an analytical solution for online tracking of multiple types of biomass streams.
 [1] ;  [2] ;  [2] ;  [1] ;  [2]
  1. Stanford Univ., Stanford, CA (United States); National Institute of Standards and Technology, Stanford, CA (United States)
  2. National Renewable Energy Lab. (NREL), Golden, CO (United States)
Publication Date:
Report Number(s):
Journal ID: ISSN 2168-0485
Grant/Contract Number:
Accepted Manuscript
Journal Name:
ACS Sustainable Chemistry & Engineering
Additional Journal Information:
Journal Volume: 4; Journal Issue: 12; Journal ID: ISSN 2168-0485
American Chemical Society (ACS)
Research Org:
National Renewable Energy Lab. (NREL), Golden, CO (United States)
Sponsoring Org:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Bioenergy Technologies Office (EE-3B)
Country of Publication:
United States
09 BIOMASS FUELS; alkaline pretreatment; analytical chemistry; biomass conversion; biorefinery; GEMBE; lignin
OSTI Identifier: