skip to main content

DOE PAGESDOE PAGES

Title: Tuning the Reversibility of Mg Anodes via Controlled Surface Passivation by H 2O/Cl in Organic Electrolytes

Developing a new generation of battery chemistries is a critical challenge to moving beyond current Li-ion technologies. In this work, we introduce a surface-science-based approach for understanding the complex phenomena controlling the reversibility of Mg anodes for Mg-ion batteries. In addition, we identify the profound impact of trace levels of H 2O (≤3 ppm) on the kinetics of Mg deposition and determine that passive films of MgO and Mg(OH) 2 are formed only after Mg deposition ceases, rather than continuously during Mg reduction. We also find that Cl inhibits passivation through the formation of adsorbed Cl (Mg–Cl(ad)) and/or MgCl 2 on the surface, as well as through a dynamic competition with H 2O in the double layer. In conclusion, this surface-science-based approach goes well beyond Mg anodes, highlighting the need for more in-depth understanding of electrolyte chemistries before a new generation of efficient and reversible battery technologies can be realized.
Authors:
 [1] ;  [2] ;  [1] ;  [1] ;  [1] ;  [1]
  1. Argonne National Lab. (ANL), Argonne, IL (United States). Joint Center for Energy Storage Research (JCESR) and Materials Science Division
  2. Argonne National Lab. (ANL), Argonne, IL (United States). Joint Center for Energy Storage Research (JCESR) and Materials Science Division; University of Ljubljana (Slovenia). Department of Chemical Engineering and Technical Safety
Publication Date:
Grant/Contract Number:
AC02-06CH11357
Type:
Accepted Manuscript
Journal Name:
Chemistry of Materials
Additional Journal Information:
Journal Volume: 28; Journal Issue: 22; Journal ID: ISSN 0897-4756
Publisher:
American Chemical Society (ACS)
Research Org:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
OSTI Identifier:
1339153