skip to main content

DOE PAGESDOE PAGES

Title: Leith diffusion model for homogeneous anisotropic turbulence

Here, a proposal for a spectral closure model for homogeneous anisotropic turbulence. The systematic development begins by closing the third-order correlation describing nonlinear interactions by an anisotropic generalization of the Leith diffusion model for isotropic turbulence. The correlation tensor is then decomposed into a tensorially isotropic part, or directional anisotropy, and a trace-free remainder, or polarization anisotropy. The directional and polarization components are then decomposed using irreducible representations of the SO(3) symmetry group. Under the ansatz that the decomposition is truncated at quadratic order, evolution equations are derived for the directional and polarization pieces of the correlation tensor. Here, numerical simulation of the model equations for a freely decaying anisotropic flow illustrate the non-trivial effects of spectral dependencies on the different return-to-isotropy rates of the directional and polarization contributions.
Authors:
; ;
Publication Date:
Report Number(s):
LA-UR-16-21435
Journal ID: ISSN 0045-7930
Grant/Contract Number:
AC52-06NA25396
Type:
Accepted Manuscript
Journal Name:
Computers and Fluids
Additional Journal Information:
Journal Volume: 151; Journal Issue: C; Journal ID: ISSN 0045-7930
Publisher:
Elsevier
Research Org:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org:
USDOE
Country of Publication:
United States
Language:
English
Subject:
97 MATHEMATICS AND COMPUTING; spectral modeling; anisotropic diffusion; anisotropic turbulence
OSTI Identifier:
1338774
Alternate Identifier(s):
OSTI ID: 1419375