skip to main content

DOE PAGESDOE PAGES

Title: CGILS Phase 2 LES intercomparison of response of subtropical marine low cloud regimes to CO 2 quadrupling and a CMIP3 composite forcing change: Large eddy simulation of cloud feedbacks

We extended Phase 1 of the CGILS large-eddy simulation (LES) intercomparison in order to understand if subtropical marine boundary-layer clouds respond to idealized climate perturbations consistently in six LES models. Here the responses to quadrupled carbon dioxide (“fast adjustment”) and to a composite climate perturbation representative of CMIP3 multimodel mean 2×CO 2 near-equilibrium conditions are analyzed. As in Phase 1, the LES is run to equilibrium using specified steady summertime forcings representative of three locations in the Northeast Pacific Ocean in shallow well-mixed stratocumulus, decoupled stratocumulus, and shallow cumulus cloud regimes. Our results are generally consistent with a single-LES study of Bretherton et al. (2013) on which this intercomparison was based. Both quadrupled CO 2 and the composite climate perturbation result in less cloud and a shallower boundary layer for all models in well-mixed stratocumulus and for all but a single LES in decoupled stratocumulus and shallow cumulus, corroborating similar findings from global climate models (GCMs). For both perturbations, the amount of cloud reduction varies across the models, but there is less intermodel scatter than in GCMs. Furthermore, the cloud radiative effect changes are much larger in the stratocumulus-capped regimes than in the shallow cumulus regime, for which precipitation bufferingmore » may damp the cloud response. In the decoupled stratocumulus and cumulus regimes, both the CO 2 increase and CMIP3 perturbations reduce boundary-layer decoupling, due to the shallowing of inversion height.« less
Authors:
 [1] ;  [1] ;  [2] ;  [3] ;  [4] ;  [5] ;  [6]
  1. Department of Atmospheric Sciences, University of Washington, Seattle Washington USA
  2. Science Systems and Applications, Inc., Hampton Virginia USA; Climate Science Branch, NASA Langley Research Center, Hampton Virginia USA
  3. Brookhaven National Laboratory, Upton New York USA
  4. Department of Physics, Cleveland State University, Cleveland Ohio USA
  5. Met Office, Exeter United Kingdom
  6. Delft University of Technology, Delft The Netherlands
Publication Date:
Report Number(s):
BNL-113350-2016-JA
Journal ID: ISSN 1942-2466; R&D Project: 2016-BNL-EE630EECA-Budg; KP1701000
Grant/Contract Number:
SC00112704
Type:
Accepted Manuscript
Journal Name:
Journal of Advances in Modeling Earth Systems
Additional Journal Information:
Journal Volume: 8; Journal Issue: 4; Journal ID: ISSN 1942-2466
Publisher:
American Geophysical Union (AGU)
Research Org:
Brookhaven National Laboratory (BNL), Upton, NY (United States)
Sponsoring Org:
USDOE Office of Science (SC), Biological and Environmental Research (BER) (SC-23)
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES
OSTI Identifier:
1338608