DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: High-temperature operation of broadband bidirectional terahertz quantum-cascade lasers

Abstract

Terahertz quantum cascade lasers (QCLs) with a broadband gain medium could play an important role for sensing and spectroscopy since then distributed-feedback schemes could be utilized to produce laser arrays on a single semiconductor chip with wide spectral coverage. QCLs can be designed to emit at two different frequencies when biased with opposing electrical polarities. Here, we develop terahertz QCLs with bidirectional operation to achieve broadband lasing from the same semiconductor chip. A three-well design scheme with shallow-well GaAs/Al0.10Ga0.90As superlattices is developed to achieve high-temperature operation for bidirectional QCLs. It is shown that shallow-well heterostructures lead to optimal quantum-transport in the superlattice for bidirectional operation compared to the prevalent GaAs/Al0.15Ga0.85As material system. Furthermore, broadband lasing in the frequency range of 3.1–3.7 THz is demonstrated for one QCL design, which achieves maximum operating temperatures of 147 K and 128 K respectively in opposing polarities. Dual-color lasing with large frequency separation is demonstrated for a second QCL, that emits at ~3.7 THz and operates up to 121 K in one polarity, and at ~2.7 THz up to 105 K in the opposing polarity. Finally, these are the highest operating temperatures achieved for broadband terahertz QCLs at the respective emission frequencies, and couldmore » lead to commercial development of broadband terahertz laser arrays.« less

Authors:
 [1];  [1];  [1];  [2];  [1]
  1. Lehigh Univ., Bethlehem, PA (United States). Dept. of Electrical and Computer Engineering
  2. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Center for Integrated Nanotechnolgies
Publication Date:
Research Org.:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1338389
Report Number(s):
SAND2016-12563J
Journal ID: ISSN 2045-2322; 649877
Grant/Contract Number:  
AC04-94AL85000
Resource Type:
Accepted Manuscript
Journal Name:
Scientific Reports
Additional Journal Information:
Journal Volume: 6; Journal ID: ISSN 2045-2322
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; 42 ENGINEERING

Citation Formats

Khanal, Sudeep, Gao, Liang, Zhao, Le, Reno, John L., and Kumar, Sushil. High-temperature operation of broadband bidirectional terahertz quantum-cascade lasers. United States: N. p., 2016. Web. doi:10.1038/srep32978.
Khanal, Sudeep, Gao, Liang, Zhao, Le, Reno, John L., & Kumar, Sushil. High-temperature operation of broadband bidirectional terahertz quantum-cascade lasers. United States. https://doi.org/10.1038/srep32978
Khanal, Sudeep, Gao, Liang, Zhao, Le, Reno, John L., and Kumar, Sushil. Mon . "High-temperature operation of broadband bidirectional terahertz quantum-cascade lasers". United States. https://doi.org/10.1038/srep32978. https://www.osti.gov/servlets/purl/1338389.
@article{osti_1338389,
title = {High-temperature operation of broadband bidirectional terahertz quantum-cascade lasers},
author = {Khanal, Sudeep and Gao, Liang and Zhao, Le and Reno, John L. and Kumar, Sushil},
abstractNote = {Terahertz quantum cascade lasers (QCLs) with a broadband gain medium could play an important role for sensing and spectroscopy since then distributed-feedback schemes could be utilized to produce laser arrays on a single semiconductor chip with wide spectral coverage. QCLs can be designed to emit at two different frequencies when biased with opposing electrical polarities. Here, we develop terahertz QCLs with bidirectional operation to achieve broadband lasing from the same semiconductor chip. A three-well design scheme with shallow-well GaAs/Al0.10Ga0.90As superlattices is developed to achieve high-temperature operation for bidirectional QCLs. It is shown that shallow-well heterostructures lead to optimal quantum-transport in the superlattice for bidirectional operation compared to the prevalent GaAs/Al0.15Ga0.85As material system. Furthermore, broadband lasing in the frequency range of 3.1–3.7 THz is demonstrated for one QCL design, which achieves maximum operating temperatures of 147 K and 128 K respectively in opposing polarities. Dual-color lasing with large frequency separation is demonstrated for a second QCL, that emits at ~3.7 THz and operates up to 121 K in one polarity, and at ~2.7 THz up to 105 K in the opposing polarity. Finally, these are the highest operating temperatures achieved for broadband terahertz QCLs at the respective emission frequencies, and could lead to commercial development of broadband terahertz laser arrays.},
doi = {10.1038/srep32978},
journal = {Scientific Reports},
number = ,
volume = 6,
place = {United States},
year = {Mon Sep 12 00:00:00 EDT 2016},
month = {Mon Sep 12 00:00:00 EDT 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 7 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

3.4-THz quantum cascade laser based on longitudinal-optical-phonon scattering for depopulation
journal, February 2003

  • Williams, Benjamin S.; Callebaut, Hans; Kumar, Sushil
  • Applied Physics Letters, Vol. 82, Issue 7
  • DOI: 10.1063/1.1554479

Multi-wavelength quantum cascade laser arrays: Multi-wavelength quantum cascade laser arrays
journal, August 2015


Bidirectional Semiconductor Laser
journal, October 1999


1.9THz quantum-cascade lasers with one-well injector
journal, March 2006

  • Kumar, Sushil; Williams, Benjamin S.; Hu, Qing
  • Applied Physics Letters, Vol. 88, Issue 12
  • DOI: 10.1063/1.2189671

Spectral gain profile of a multi-stack terahertz quantum cascade laser
journal, November 2014

  • Bachmann, D.; Rösch, M.; Deutsch, C.
  • Applied Physics Letters, Vol. 105, Issue 18
  • DOI: 10.1063/1.4901316

Terahertz quantum cascade lasers operating up to ∼ 200 K with optimized oscillator strength and improved injection tunneling
journal, January 2012

  • Fathololoumi, S.; Dupont, E.; Chan, C. W. I.
  • Optics Express, Vol. 20, Issue 4
  • DOI: 10.1364/OE.20.003866

Ultra-broadband heterogeneous quantum cascade laser emitting from 2.2 to 3.2 THz
journal, November 2011

  • Turčinková, Dana; Scalari, Giacomo; Castellano, Fabrizio
  • Applied Physics Letters, Vol. 99, Issue 19
  • DOI: 10.1063/1.3658874

Tall-barrier terahertz quantum cascade lasers
journal, October 2013

  • Chan, Chun Wang I.; Hu, Qing; Reno, John L.
  • Applied Physics Letters, Vol. 103, Issue 15
  • DOI: 10.1063/1.4824878

Terahertz quantum-cascade lasers based on a three-well active module
journal, January 2007

  • Luo, H.; Laframboise, S. R.; Wasilewski, Z. R.
  • Applied Physics Letters, Vol. 90, Issue 4
  • DOI: 10.1063/1.2437071

186 K operation of terahertz quantum-cascade lasers based on a diagonal design
journal, March 2009

  • Kumar, Sushil; Hu, Qing; Reno, John L.
  • Applied Physics Letters, Vol. 94, Issue 13
  • DOI: 10.1063/1.3114418

A 1.8-THz quantum cascade laser operating significantly above the temperature of ℏω/kB
journal, December 2010

  • Kumar, Sushil; Chan, Chun Wang I.; Hu, Qing
  • Nature Physics, Vol. 7, Issue 2
  • DOI: 10.1038/nphys1846

Electrically switchable emission in terahertz quantum cascade lasers
journal, January 2008

  • Freeman, Joshua R.; Marshall, Owen P.; Beere, Harvey E.
  • Optics Express, Vol. 16, Issue 24
  • DOI: 10.1364/OE.16.019830

High power terahertz quantum cascade lasers with symmetric wafer bonded active regions
journal, October 2013

  • Brandstetter, Martin; Deutsch, Christoph; Krall, Michael
  • Applied Physics Letters, Vol. 103, Issue 17
  • DOI: 10.1063/1.4826943

Terahertz semiconductor-heterostructure laser
journal, May 2002

  • Köhler, Rüdeger; Tredicucci, Alessandro; Beltram, Fabio
  • Nature, Vol. 417, Issue 6885
  • DOI: 10.1038/417156a

Experimental investigation of terahertz quantum cascade laser with variable barrier heights
journal, April 2014

  • Jiang, Aiting; Matyas, Alpar; Vijayraghavan, Karun
  • Journal of Applied Physics, Vol. 115, Issue 16
  • DOI: 10.1063/1.4873461

Temperature performance of terahertz quantum-cascade lasers with resonant-phonon active-regions
journal, September 2014


Terahertz quantum cascade lasers with copper metal-metal waveguides operating up to 178 K
journal, January 2008

  • Belkin, Mikhail A.; Fan, Jonathan A.; Hormoz, Sahand
  • Optics Express, Vol. 16, Issue 5
  • DOI: 10.1364/OE.16.003242

DFB Quantum Cascade Laser Arrays
journal, May 2009

  • Lee, Benjamin G.; Belkin, Mikhail A.; Pflugl, Christian
  • IEEE Journal of Quantum Electronics, Vol. 45, Issue 5
  • DOI: 10.1109/JQE.2009.2013175

Multi-wavelength quantum cascade laser arrays: Multi-wavelength quantum cascade laser arrays
journal, August 2015


Ultra-broadband heterogeneous quantum cascade laser emitting from 2.2 to 3.2 THz
journal, November 2011

  • Turčinková, Dana; Scalari, Giacomo; Castellano, Fabrizio
  • Applied Physics Letters, Vol. 99, Issue 19
  • DOI: 10.1063/1.3658874

Limiting Factors to the Temperature Performance of THz Quantum Cascade Lasers Based on the Resonant-Phonon Depopulation Scheme
journal, January 2012

  • Chassagneux, Y.; Wang, Q. J.; Khanna, S. P.
  • IEEE Transactions on Terahertz Science and Technology, Vol. 2, Issue 1
  • DOI: 10.1109/tthz.2011.2177176

Bidirectional Semiconductor Laser
journal, October 1999


Terahertz ambipolar dual-wavelength quantum cascade laser
journal, January 2009

  • Lever, L.; Hinchcliffe, N. M.; Khanna, S. P.
  • Optics Express, Vol. 17, Issue 22
  • DOI: 10.1364/oe.17.019926

Broadband THz lasing from a photon-phonon quantum cascade structure
journal, January 2010

  • Scalari, G.; Amanti, M. I.; Walther, C.
  • Optics Express, Vol. 18, Issue 8
  • DOI: 10.1364/oe.18.008043

21 THz quantum-cascade laser operating up to 144 K based on a scattering-assisted injection design
journal, January 2015

  • Khanal, Sudeep; Reno, John L.; Kumar, Sushil
  • Optics Express, Vol. 23, Issue 15
  • DOI: 10.1364/oe.23.019689

Works referencing / citing this record:

Short Barriers for Lowering Current-Density in Terahertz Quantum Cascade Lasers
journal, January 2020