DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Quantification of in-contact probe-sample electrostatic forces with dynamic atomic force microscopy

Abstract

Here, atomic force microscopy (AFM) methods utilizing resonant mechanical vibrations of cantilevers in contact with a sample surface have shown sensitivities as high as few picometers for detecting surface displacements. Such a high sensitivity is harnessed in several AFM imaging modes. Here, we demonstrate a cantilever-resonance-based method to quantify electrostatic forces on a probe in the probe-sample junction in the presence of a surface potential or when a bias voltage is applied to the AFM probe. We find that the electrostatic forces acting on the probe tip apex can produce signals equivalent to a few pm of surface displacement. In combination with modeling, the measurements of the force were used to access the strength of the electrical field at the probe tip apex in contact with a sample. We find an evidence that the electric field strength in the junction can reach ca. 1 V nm–1 at a bias voltage of a few volts and is limited by non-ideality of the tip-sample contact. This field is sufficiently strong to significantly influence material states and kinetic processes through charge injection, Maxwell stress, shifts of phase equilibria, and reduction of energy barriers for activated processes. Besides, the results provide a baseline formore » accounting for the effects of local electrostatic forces in electromechanical AFM measurements as well as offer additional means to probe ionic mobility and field-induced phenomena in solids.« less

Authors:
ORCiD logo [1]; ORCiD logo [1];  [2];  [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [3]
  1. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  2. Southern Research Institute, Birmingham, AL (United States)
  3. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Univ. of Aveiro, Aveiro (Portugal)
Publication Date:
Research Org.:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1408026
Alternate Identifier(s):
OSTI ID: 1338074
Grant/Contract Number:  
AC05-00OR22725
Resource Type:
Accepted Manuscript
Journal Name:
Nanotechnology
Additional Journal Information:
Journal Volume: 28; Journal Issue: 6; Journal ID: ISSN 0957-4484
Publisher:
IOP Publishing
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

Balke, Nina Wisinger, Jesse, Stephen, Carmichael, Ben D., Okatan, M. Baris, Kravchenko, Ivan I., Kalinin, Sergei V., and Tselev, Alexander. Quantification of in-contact probe-sample electrostatic forces with dynamic atomic force microscopy. United States: N. p., 2017. Web. doi:10.1088/1361-6528/aa5370.
Balke, Nina Wisinger, Jesse, Stephen, Carmichael, Ben D., Okatan, M. Baris, Kravchenko, Ivan I., Kalinin, Sergei V., & Tselev, Alexander. Quantification of in-contact probe-sample electrostatic forces with dynamic atomic force microscopy. United States. https://doi.org/10.1088/1361-6528/aa5370
Balke, Nina Wisinger, Jesse, Stephen, Carmichael, Ben D., Okatan, M. Baris, Kravchenko, Ivan I., Kalinin, Sergei V., and Tselev, Alexander. Wed . "Quantification of in-contact probe-sample electrostatic forces with dynamic atomic force microscopy". United States. https://doi.org/10.1088/1361-6528/aa5370. https://www.osti.gov/servlets/purl/1408026.
@article{osti_1408026,
title = {Quantification of in-contact probe-sample electrostatic forces with dynamic atomic force microscopy},
author = {Balke, Nina Wisinger and Jesse, Stephen and Carmichael, Ben D. and Okatan, M. Baris and Kravchenko, Ivan I. and Kalinin, Sergei V. and Tselev, Alexander},
abstractNote = {Here, atomic force microscopy (AFM) methods utilizing resonant mechanical vibrations of cantilevers in contact with a sample surface have shown sensitivities as high as few picometers for detecting surface displacements. Such a high sensitivity is harnessed in several AFM imaging modes. Here, we demonstrate a cantilever-resonance-based method to quantify electrostatic forces on a probe in the probe-sample junction in the presence of a surface potential or when a bias voltage is applied to the AFM probe. We find that the electrostatic forces acting on the probe tip apex can produce signals equivalent to a few pm of surface displacement. In combination with modeling, the measurements of the force were used to access the strength of the electrical field at the probe tip apex in contact with a sample. We find an evidence that the electric field strength in the junction can reach ca. 1 V nm–1 at a bias voltage of a few volts and is limited by non-ideality of the tip-sample contact. This field is sufficiently strong to significantly influence material states and kinetic processes through charge injection, Maxwell stress, shifts of phase equilibria, and reduction of energy barriers for activated processes. Besides, the results provide a baseline for accounting for the effects of local electrostatic forces in electromechanical AFM measurements as well as offer additional means to probe ionic mobility and field-induced phenomena in solids.},
doi = {10.1088/1361-6528/aa5370},
journal = {Nanotechnology},
number = 6,
volume = 28,
place = {United States},
year = {Wed Jan 04 00:00:00 EST 2017},
month = {Wed Jan 04 00:00:00 EST 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 38 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Modification and detection of domains on ferroelectric PZT films by scanning force microscopy
journal, January 1994


Scanning force microscopy for the study of domain structure in ferroelectric thin films
journal, March 1996

  • Gruverman, A.
  • Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, Vol. 14, Issue 2
  • DOI: 10.1116/1.589143

Switching properties of self-assembled ferroelectric memory cells
journal, August 1999

  • Alexe, M.; Gruverman, A.; Harnagea, C.
  • Applied Physics Letters, Vol. 75, Issue 8
  • DOI: 10.1063/1.124628

Differentiating 180° and 90° switching of ferroelectric domains with three-dimensional piezoresponse force microscopy
journal, November 2000

  • Roelofs, A.; Böttger, U.; Waser, R.
  • Applied Physics Letters, Vol. 77, Issue 21, p. 3444-3446
  • DOI: 10.1063/1.1328049

Electromechanical Imaging and Spectroscopy of Ferroelectric and Piezoelectric Materials: State of the Art and Prospects for the Future
journal, August 2009


Real Space Mapping of Li-Ion Transport in Amorphous Si Anodes with Nanometer Resolution
journal, September 2010

  • Balke, Nina; Jesse, Stephen; Kim, Yoongu
  • Nano Letters, Vol. 10, Issue 9
  • DOI: 10.1021/nl101439x

Ionically-Mediated Electromechanical Hysteresis in Transition Metal Oxides
journal, July 2012

  • Kim, Yunseok; Morozovska, Anna N.; Kumar, Amit
  • ACS Nano, Vol. 6, Issue 8
  • DOI: 10.1021/nn3020757

Controlled Nanopatterning of a Polymerized Ionic Liquid in a Strong Electric Field
journal, December 2014

  • Bocharova, Vera; Agapov, Alexander L.; Tselev, Alexander
  • Advanced Functional Materials, Vol. 25, Issue 5
  • DOI: 10.1002/adfm.201402852

Electrostatic nanolithography in polymers using atomic force microscopy
journal, June 2003

  • Lyuksyutov, Sergei F.; Vaia, Richard A.; Paramonov, Pavel B.
  • Nature Materials, Vol. 2, Issue 7
  • DOI: 10.1038/nmat926

Peculiarities of an anomalous electronic current during atomic force microscopy assisted nanolithography on n-type silicon
journal, May 2003


Induced Water Condensation and Bridge Formation by Electric Fields in Atomic Force Microscopy
journal, August 2006

  • Sacha, G. M.; Verdaguer, A.; Salmeron, M.
  • The Journal of Physical Chemistry B, Vol. 110, Issue 30
  • DOI: 10.1021/jp061148t

Electric-field-induced condensation: An extension of the Kelvin equation
journal, June 2011


Ab Initio Molecular Dynamics Study of Dissociation of Water under an Electric Field
journal, May 2012


Nanoscale Lubrication of Ionic Surfaces Controlled via a Strong Electric Field
journal, January 2015

  • Strelcov, Evgheni; Kumar, Rajeev; Bocharova, Vera
  • Scientific Reports, Vol. 5, Issue 1
  • DOI: 10.1038/srep08049

The Role of Electrochemical Phenomena in Scanning Probe Microscopy of Ferroelectric Thin Films
journal, June 2011

  • Kalinin, Sergei V.; Jesse, Stephen; Tselev, Alexander
  • ACS Nano, Vol. 5, Issue 7
  • DOI: 10.1021/nn2013518

Resonance enhancement in piezoresponse force microscopy: Mapping electromechanical activity, contact stiffness, and Q factor
journal, July 2006

  • Jesse, Stephen; Mirman, Boris; Kalinin, Sergei V.
  • Applied Physics Letters, Vol. 89, Issue 2
  • DOI: 10.1063/1.2221496

Nonlinear contact resonance spectroscopy in atomic force microscopy
journal, November 2007


High resolution quantitative piezoresponse force microscopy of BiFeO 3 nanofibers with dramatically enhanced sensitivity
journal, January 2012

  • Xie, Shuhong; Gannepalli, Anil; Chen, Qian Nataly
  • Nanoscale, Vol. 4, Issue 2
  • DOI: 10.1039/C1NR11099C

Effect of cantilever–sample interaction on piezoelectric force microscopy
journal, February 2002

  • Hong, Seungbum; Shin, Hyunjung; Woo, Jungwon
  • Applied Physics Letters, Vol. 80, Issue 8
  • DOI: 10.1063/1.1454219

Mechanisms of electromechanical coupling in strain based scanning probe microscopy
journal, June 2014

  • Chen, Qian Nataly; Ou, Yun; Ma, Feiyue
  • Applied Physics Letters, Vol. 104, Issue 24
  • DOI: 10.1063/1.4884422

More ferroelectrics discovered by switching spectroscopy piezoresponse force microscopy?
journal, October 2014


Ferroelectric-like response from the surface of SrTiO 3 crystals at high temperatures
journal, September 2014

  • Jyotsna, Shubhra; Arora, Ashima; Sekhon, Jagmeet S.
  • Journal of Applied Physics, Vol. 116, Issue 10
  • DOI: 10.1063/1.4895484

Differentiating Ferroelectric and Nonferroelectric Electromechanical Effects with Scanning Probe Microscopy
journal, May 2015


The influence of the local oxygen vacancy concentration on the piezoresponse of strontium titanate thin films
journal, January 2015

  • Andrä, Michael; Gunkel, Felix; Bäumer, Christoph
  • Nanoscale, Vol. 7, Issue 34
  • DOI: 10.1039/C5NR03643G

In-situ piezoresponse force microscopy cantilever mode shape profiling
journal, August 2015


The role of substrates and environment in piezoresponse force microscopy: A case study with regular glass slides
journal, November 2016


Determination of ferroelectric contributions to electromechanical response by frequency dependent piezoresponse force microscopy
journal, July 2016

  • Seol, Daehee; Park, Seongjae; Varenyk, Olexandr V.
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep30579

Hysteresis loops revisited: An efficient method to analyze ferroic materials
journal, September 2016

  • Corbellini, Luca; Plathier, Julien; Lacroix, Christian
  • Journal of Applied Physics, Vol. 120, Issue 12
  • DOI: 10.1063/1.4963756

Electrostrictive and electrostatic responses in contact mode voltage modulated scanning probe microscopies
journal, June 2014

  • Eliseev, Eugene A.; Morozovska, Anna N.; Ievlev, Anton V.
  • Applied Physics Letters, Vol. 104, Issue 23
  • DOI: 10.1063/1.4882861

Scanning force microscopy of domain structure in ferroelectric thin films: imaging and control
journal, September 1997


Measurement of hardness, surface potential, and charge distribution with dynamic contact mode electrostatic force microscope
journal, March 1999

  • Hong, J. W.; Park, Sang-il; Khim, Z. G.
  • Review of Scientific Instruments, Vol. 70, Issue 3
  • DOI: 10.1063/1.1149660

Piezoresponse force microscopy and recent advances in nanoscale studies of ferroelectrics
journal, January 2006


Measuring oxygen reduction/evolution reactions on the nanoscale
journal, August 2011

  • Kumar, Amit; Ciucci, Francesco; Morozovska, Anna N.
  • Nature Chemistry, Vol. 3, Issue 9
  • DOI: 10.1038/nchem.1112

Imaging space charge regions in Sm-doped ceria using electrochemical strain microscopy
journal, November 2014

  • Chen, Qian Nataly; Adler, Stuart B.; Li, Jiangyu
  • Applied Physics Letters, Vol. 105, Issue 20
  • DOI: 10.1063/1.4901102

Electrochemical strain microscopy of silica glasses
journal, August 2014


Li transport in fresh and aged LiMn 2 O 4 cathodes via electrochemical strain microscopy
journal, August 2015

  • Luchkin, Sergey Yu.; Romanyuk, Konstantin; Ivanov, Maxim
  • Journal of Applied Physics, Vol. 118, Issue 7
  • DOI: 10.1063/1.4927816

Electrostatic force microscope imaging analyzed by the surface charge method
journal, September 1993

  • Watanabe, S.
  • Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, Vol. 11, Issue 5
  • DOI: 10.1116/1.586477

Evaluation of the capacitive force between an atomic force microscopy tip and a metallic surface
journal, April 1998

  • Hudlet, S.; Saint Jean, M.; Guthmann, C.
  • The European Physical Journal B, Vol. 2, Issue 1
  • DOI: 10.1007/s100510050219

Resolution enhancement and improved data interpretation in electrostatic force microscopy
journal, November 2001


Electrostatic forces between sharp tips and metallic and dielectric samples
journal, December 2001

  • Gómez-Moñivas, S.; Froufe-Pérez, L. S.; Caamaño, A. J.
  • Applied Physics Letters, Vol. 79, Issue 24
  • DOI: 10.1063/1.1424478

Cantilever effects on electrostatic force gradient microscopy
journal, September 2004

  • Sacha, G. M.; Sáenz, J. J.
  • Applied Physics Letters, Vol. 85, Issue 13
  • DOI: 10.1063/1.1797539

A method for calculating capacitances and electrostatic forces in atomic force microscopy
journal, January 2007

  • Sacha, G. M.; Sahagún, E.; Sáenz, J. J.
  • Journal of Applied Physics, Vol. 101, Issue 2
  • DOI: 10.1063/1.2424524

Real versus Measured Surface Potentials in Scanning Kelvin Probe Microscopy
journal, March 2008

  • Charrier, Dimitri S. H.; Kemerink, Martijn; Smalbrugge, Barry E.
  • ACS Nano, Vol. 2, Issue 4
  • DOI: 10.1021/nn700190t

Quantifying the dielectric constant of thick insulators using electrostatic force microscopy
journal, May 2010

  • Fumagalli, L.; Gramse, G.; Esteban-Ferrer, D.
  • Applied Physics Letters, Vol. 96, Issue 18
  • DOI: 10.1063/1.3427362

The role of the cantilever in Kelvin probe force microscopy measurements
journal, January 2011

  • Elias, George; Glatzel, Thilo; Meyer, Ernst
  • Beilstein Journal of Nanotechnology, Vol. 2
  • DOI: 10.3762/bjnano.2.29

Finite-size effects and analytical modeling of electrostatic force microscopy applied to dielectric films
journal, June 2014


Accurate Extraction of Electrostatic Force by a Voltage-Pulse Force Spectroscopy
journal, June 2015


Quantification of surface displacements and electromechanical phenomena via dynamic atomic force microscopy
journal, September 2016


Dielectric-constant measurement of thin insulating films at low frequency by nanoscale capacitance microscopy
journal, December 2007

  • Fumagalli, Laura; Ferrari, Giorgio; Sampietro, Marco
  • Applied Physics Letters, Vol. 91, Issue 24
  • DOI: 10.1063/1.2821119

Capacitive effects on quantitative dopant profiling with scanned electrostatic force microscopes
journal, January 1996

  • Hochwitz, Todd
  • Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, Vol. 14, Issue 1
  • DOI: 10.1116/1.588494

Electrostatic forces acting on the tip in atomic force microscopy: Modelization and comparison with analytic expressions
journal, February 1997

  • Belaidi, S.; Girard, P.; Leveque, G.
  • Journal of Applied Physics, Vol. 81, Issue 3
  • DOI: 10.1063/1.363884

Quantitative Noncontact Electrostatic Force Imaging of Nanocrystal Polarizability
journal, February 2003

  • Cherniavskaya, Oksana; Chen, Liwei; Weng, Vivian
  • The Journal of Physical Chemistry B, Vol. 107, Issue 7
  • DOI: 10.1021/jp0265438

Nanoscale capacitance imaging with attofarad resolution using ac current sensing atomic force microscopy
journal, August 2006


Towards local electromechanical probing of cellular and biomolecular systems in a liquid environment
journal, September 2007


Nanoscale capacitance microscopy of thin dielectric films
journal, July 2008

  • Gomila, G.; Toset, J.; Fumagalli, L.
  • Journal of Applied Physics, Vol. 104, Issue 2
  • DOI: 10.1063/1.2957069

Exploring Local Electrostatic Effects with Scanning Probe Microscopy: Implications for Piezoresponse Force Microscopy and Triboelectricity
journal, October 2014

  • Balke, Nina; Maksymovych, Petro; Jesse, Stephen
  • ACS Nano, Vol. 8, Issue 10
  • DOI: 10.1021/nn505176a

Atomic Force Acoustic Microscopy
book, January 2006


Band excitation in scanning probe microscopy: sines of change
journal, November 2011


Electromechanical detection in scanning probe microscopy: Tip models and materials contrast
journal, July 2007

  • Eliseev, Eugene A.; Kalinin, Sergei V.; Jesse, Stephen
  • Journal of Applied Physics, Vol. 102, Issue 1
  • DOI: 10.1063/1.2749463

ALD of Hafnium Oxide Thin Films from Tetrakis(ethylmethylamino)hafnium and Ozone
journal, January 2005

  • Liu, Xinye; Ramanathan, Sasangan; Longdergan, Ana
  • Journal of The Electrochemical Society, Vol. 152, Issue 3
  • DOI: 10.1149/1.1859631

Investigations into local piezoelectric properties by atomic force microscopy
journal, January 2000

  • Durkan, C.; Chu, D. P.; Migliorato, P.
  • Applied Physics Letters, Vol. 76, Issue 3
  • DOI: 10.1063/1.125756

Switching spectroscopy piezoresponse force microscopy of ferroelectric materials
journal, February 2006

  • Jesse, Stephen; Baddorf, Arthur P.; Kalinin, Sergei V.
  • Applied Physics Letters, Vol. 88, Issue 6
  • DOI: 10.1063/1.2172216

Rapid multidimensional data acquisition in scanning probe microscopy applied to local polarization dynamics and voltage dependent contact mechanics
journal, September 2008

  • Jesse, Stephen; Maksymovych, Peter; Kalinin, Sergei V.
  • Applied Physics Letters, Vol. 93, Issue 11
  • DOI: 10.1063/1.2980031

Kinetics of ferroelectric domain structure during switching: Theory and experiment
journal, January 1994


Analysis of Water in Confined Geometries and at Interfaces
journal, June 2010


Dielectric Constant of Ices and Water: A Lesson about Water Interactions
journal, June 2011

  • Aragones, J. L.; MacDowell, L. G.; Vega, C.
  • The Journal of Physical Chemistry A, Vol. 115, Issue 23
  • DOI: 10.1021/jp105975c

Higher Order Ferroic Switching Induced by Scanning Force Microscopy
text, January 2001


The influence of the local oxygen vacancy concentration on the piezoresponse of strontium titanate thin films
text, January 2015


Ionically-mediated electromechanical hysteresis in transition metal oxides
preprint, January 2011


Electrostrictive and electrostatic responses in contact mode voltage modulated Scanning Probe Microscopies
text, January 2014


Mechanisms of Electromechanical Coupling in Strain Based Scanning Probe Microscopy
preprint, January 2014


Electromechanical Detection in Scanning Probe Microscopy: Tip Models and Materials Contrast
text, January 2006


Works referencing / citing this record:

Dielectric Response: Answer to Many Questions in the Methylammonium Lead Halide Solar Cell Absorbers
journal, May 2017

  • Anusca, Irina; Balčiūnas, Sergejus; Gemeiner, Pascale
  • Advanced Energy Materials, Vol. 7, Issue 19
  • DOI: 10.1002/aenm.201700600

Correlation between drive amplitude and resonance frequency in electrochemical strain microscopy: Influence of electrostatic forces
journal, June 2017

  • Lushta, Valon; Bradler, Stephan; Roling, Bernhard
  • Journal of Applied Physics, Vol. 121, Issue 22
  • DOI: 10.1063/1.4984831

Electrostatic contribution to hysteresis loop in piezoresponse force microscopy
journal, April 2019

  • Qiao, Huimin; Seol, Daehee; Sun, Changhyo
  • Applied Physics Letters, Vol. 114, Issue 15
  • DOI: 10.1063/1.5090591

Experimental reconstruction of the contact resonance shape factor for quantification and amplification of bias-induced strain in atomic force microscopy
journal, April 2019

  • Killgore, Jason P.; Deolia, Akshay; Robins, Lawrence
  • Applied Physics Letters, Vol. 114, Issue 13
  • DOI: 10.1063/1.5091803

Towards nanoscale electrical measurements in liquid by advanced KPFM techniques: a review
journal, July 2018

  • Collins, Liam; Kilpatrick, Jason I.; Kalinin, Sergei V.
  • Reports on Progress in Physics, Vol. 81, Issue 8
  • DOI: 10.1088/1361-6633/aab560

Higher-eigenmode piezoresponse force microscopy: a path towards increased sensitivity and the elimination of electrostatic artifacts
journal, March 2018

  • MacDonald, Gordon A.; DelRio, Frank W.; Killgore, Jason P.
  • Nano Futures, Vol. 2, Issue 1
  • DOI: 10.1088/2399-1984/aab2bc