skip to main content

DOE PAGESDOE PAGES

Title: Electrode behavior RE-visited: Monitoring potential windows, capacity loss, and impedance changes in Li 1.03 (Ni 0.5Co 0.2Mn 0.3) 0.97O 2/silicon-graphite full cells

Here, the capacity and power performance of lithium-ion battery cells evolve over time. The mechanisms leading to these changes can often be identified through knowledge of electrode potentials, which contain information about electrochemical processes at the electrode-electrolyte interfaces. In this study we monitor electrode potentials within full cells containing a Li 1.03(Ni 0.5Co 0.2Mn 0.3) 0.97O 2–based (NCM523) positive electrode, a silicon-graphite negative electrode, and an LiPF6-bearing electrolyte, with and without fluoroethylene carbonate (FEC) or vinylene carbonate (VC) additives. The electrode potentials are monitored with a Li-metal reference electrode (RE) positioned besides the electrode stack; changes in these potentials are used to examine electrode state-of-charge (SOC) shifts, material utilization, and loss of electrochemically active material. Electrode impedances are obtained with a Li xSn RE located within the stack; the data display the effect of cell voltage and electrode SOC changes on the measured values after formation cycling and after aging. Our measurements confirm the beneficial effect of FEC and VC electrolyte additives in reducing full cell capacity loss and impedance rise after cycling in a 3.0–4.2 V range. Comparisons with data from a full cell containing a graphite-based negative highlight the consequences of including silicon in the electrode. Our observationsmore » on electrode potentials, capacity, and impedance changes on cycling are crucial to designing long-lasting, silicon-bearing, lithium-ion cells.« less
Authors:
 [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1]
  1. Argonne National Lab. (ANL), Argonne, IL (United States)
Publication Date:
Grant/Contract Number:
AC02-06CH11357
Type:
Accepted Manuscript
Journal Name:
Journal of the Electrochemical Society
Additional Journal Information:
Journal Volume: 163; Journal Issue: 6; Journal ID: ISSN 0013-4651
Publisher:
The Electrochemical Society
Research Org:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office (EE-3V)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 25 ENERGY STORAGE; aging behavior; electrochemical impedance spectroscopy; fluoroethylene carbonate; HPPC test; NCM523; reference electrodes; vinylene carbonate; slippage; layered oxide
OSTI Identifier:
1337954

Klett, Matilda, Gilbert, James A., Trask, Stephen E., Polzin, Bryant J., Jansen, Andrew N., Dees, Dennis W., and Abraham, Daniel P.. Electrode behavior RE-visited: Monitoring potential windows, capacity loss, and impedance changes in Li1.03 (Ni0.5Co0.2Mn0.3)0.97O2/silicon-graphite full cells. United States: N. p., Web. doi:10.1149/2.0271606jes.
Klett, Matilda, Gilbert, James A., Trask, Stephen E., Polzin, Bryant J., Jansen, Andrew N., Dees, Dennis W., & Abraham, Daniel P.. Electrode behavior RE-visited: Monitoring potential windows, capacity loss, and impedance changes in Li1.03 (Ni0.5Co0.2Mn0.3)0.97O2/silicon-graphite full cells. United States. doi:10.1149/2.0271606jes.
Klett, Matilda, Gilbert, James A., Trask, Stephen E., Polzin, Bryant J., Jansen, Andrew N., Dees, Dennis W., and Abraham, Daniel P.. 2016. "Electrode behavior RE-visited: Monitoring potential windows, capacity loss, and impedance changes in Li1.03 (Ni0.5Co0.2Mn0.3)0.97O2/silicon-graphite full cells". United States. doi:10.1149/2.0271606jes. https://www.osti.gov/servlets/purl/1337954.
@article{osti_1337954,
title = {Electrode behavior RE-visited: Monitoring potential windows, capacity loss, and impedance changes in Li1.03 (Ni0.5Co0.2Mn0.3)0.97O2/silicon-graphite full cells},
author = {Klett, Matilda and Gilbert, James A. and Trask, Stephen E. and Polzin, Bryant J. and Jansen, Andrew N. and Dees, Dennis W. and Abraham, Daniel P.},
abstractNote = {Here, the capacity and power performance of lithium-ion battery cells evolve over time. The mechanisms leading to these changes can often be identified through knowledge of electrode potentials, which contain information about electrochemical processes at the electrode-electrolyte interfaces. In this study we monitor electrode potentials within full cells containing a Li1.03(Ni0.5Co0.2Mn0.3)0.97O2–based (NCM523) positive electrode, a silicon-graphite negative electrode, and an LiPF6-bearing electrolyte, with and without fluoroethylene carbonate (FEC) or vinylene carbonate (VC) additives. The electrode potentials are monitored with a Li-metal reference electrode (RE) positioned besides the electrode stack; changes in these potentials are used to examine electrode state-of-charge (SOC) shifts, material utilization, and loss of electrochemically active material. Electrode impedances are obtained with a LixSn RE located within the stack; the data display the effect of cell voltage and electrode SOC changes on the measured values after formation cycling and after aging. Our measurements confirm the beneficial effect of FEC and VC electrolyte additives in reducing full cell capacity loss and impedance rise after cycling in a 3.0–4.2 V range. Comparisons with data from a full cell containing a graphite-based negative highlight the consequences of including silicon in the electrode. Our observations on electrode potentials, capacity, and impedance changes on cycling are crucial to designing long-lasting, silicon-bearing, lithium-ion cells.},
doi = {10.1149/2.0271606jes},
journal = {Journal of the Electrochemical Society},
number = 6,
volume = 163,
place = {United States},
year = {2016},
month = {3}
}