skip to main content


Title: Electrocatalysis paradigm for protection of cathode materials in high-voltage lithium-ion batteries

A new mechanistic framework is suggested to account for the protective action of certain electrolyte additives on high-voltage positive electrode (cathode) materials. The mechanism involves inactivation of catalytically active centers on the electrode active materials through fragmentation reactions involving molecules at its surface. The cathode protection additives oxidize before the solvent and serve as sacrificial inhibitors of the catalytic centers. Without the additive, the surface oxidation of the solvent (like solvent oxidation in the bulk) yields H loss radicals and releases the proton that can combine with anions forming corrosive acids. This proton-release reaction is demonstrated experimentally for boronate additives. Specific radical reactions for the latter additives on the electrode surface are suggested. Furthermore, the same approach can be used to rationalize the protective action of other additives and account for various observations regarding their performance.
 [1] ;  [1]
  1. Argonne National Lab. (ANL), Argonne, IL (United States)
Publication Date:
Grant/Contract Number:
Accepted Manuscript
Journal Name:
Journal of Physical Chemistry. C
Additional Journal Information:
Journal Volume: 120; Journal Issue: 28; Journal ID: ISSN 1932-7447
American Chemical Society
Research Org:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22); USDOE Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office (EE-3V)
Country of Publication:
United States
36 MATERIALS SCIENCE; 25 ENERGY STORAGE; electrocatalysis; electrolyte additives; electron paramagnetic resonance; lithium ion battery
OSTI Identifier: