skip to main content

DOE PAGESDOE PAGES

Title: Chemical stability of Lithium 2-trifluoromethyl-4,5-dicyanoimidazolide, an electrolyte salt for Li-ion cells

Lithium hexafluorophosphate (LiPF 6) is ubiquitous in commercial lithium-ion batteries, but it is hydrolytically unstable and corrosive on electrode surfaces. Using a more stable salt would confer multiple benefits for high-voltage operation, but many such electrolyte systems facilitate anodic dissolution and pitting corrosion of aluminum current collectors that negate their advantages. Lithium 2-trifluoromethyl-4,5-dicyanoimidazolide (LiTDI) is a new salt that was designed specifically for high-voltage cells. In this study we demonstrate that in carbonate electrolytes, LiTDI prevents anodic dissolution of Al current collectors, which places it into a select group of corrosion inhibitors. However, we also demonstrate that LiTDI becomes reduced on lithiated graphite, undergoing sequential defluorination and yielding a thick and resistive solid-electrolyte interphase (SEI), which increases impedance and lowers electrode capacity. The mechanistic causes for this behavior are examined using computational chemistry methods in the light of recent spectroscopic studies. Here, we demonstrate that LiTDI reduction can be prevented by certain electrolyte additives, which include fluoroethylene carbonate, vinylene carbonate and lithium bis(oxalato)borate. This beneficial action is due to preferential reduction of these additives over LiTDI at a higher potential vs. Li/Li +, so the resulting SEI can prevent the direct reduction of LiTDI at lower potentials on the graphitemore » electrode.« less
Authors:
ORCiD logo [1] ;  [2] ;  [1] ;  [1] ;  [1]
  1. Argonne National Lab. (ANL), Argonne, IL (United States). Chemical Sciences and Engineering Division
  2. Argonne National Lab. (ANL), Argonne, IL (United States). Materials Engineering Research Facility
Publication Date:
Grant/Contract Number:
AC02-06CH11357
Type:
Accepted Manuscript
Journal Name:
Journal of Physical Chemistry. C
Additional Journal Information:
Journal Volume: 120; Journal Issue: 50; Journal ID: ISSN 1932-7447
Publisher:
American Chemical Society
Research Org:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office (EE-3V)
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; lithium battery; solid electrolyte interphase
OSTI Identifier:
1337946