DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Chemical stability of Lithium 2-trifluoromethyl-4,5-dicyanoimidazolide, an electrolyte salt for Li-ion cells

Abstract

Lithium hexafluorophosphate (LiPF6) is ubiquitous in commercial lithium-ion batteries, but it is hydrolytically unstable and corrosive on electrode surfaces. Using a more stable salt would confer multiple benefits for high-voltage operation, but many such electrolyte systems facilitate anodic dissolution and pitting corrosion of aluminum current collectors that negate their advantages. Lithium 2-trifluoromethyl-4,5-dicyanoimidazolide (LiTDI) is a new salt that was designed specifically for high-voltage cells. In this study we demonstrate that in carbonate electrolytes, LiTDI prevents anodic dissolution of Al current collectors, which places it into a select group of corrosion inhibitors. However, we also demonstrate that LiTDI becomes reduced on lithiated graphite, undergoing sequential defluorination and yielding a thick and resistive solid-electrolyte interphase (SEI), which increases impedance and lowers electrode capacity. The mechanistic causes for this behavior are examined using computational chemistry methods in the light of recent spectroscopic studies. Here, we demonstrate that LiTDI reduction can be prevented by certain electrolyte additives, which include fluoroethylene carbonate, vinylene carbonate and lithium bis(oxalato)borate. This beneficial action is due to preferential reduction of these additives over LiTDI at a higher potential vs. Li/Li+, so the resulting SEI can prevent the direct reduction of LiTDI at lower potentials on the graphite electrode.

Authors:
ORCiD logo [1];  [2];  [1];  [1];  [1]
  1. Argonne National Lab. (ANL), Argonne, IL (United States). Chemical Sciences and Engineering Division
  2. Argonne National Lab. (ANL), Argonne, IL (United States). Materials Engineering Research Facility
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office (EE-3V)
OSTI Identifier:
1337946
Grant/Contract Number:  
AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Physical Chemistry. C
Additional Journal Information:
Journal Volume: 120; Journal Issue: 50; Journal ID: ISSN 1932-7447
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; lithium battery; solid electrolyte interphase

Citation Formats

Shkrob, Ilya A., Pupek, Krzysztof Z., Gilbert, James A., Trask, Stephen E., and Abraham, Daniel P. Chemical stability of Lithium 2-trifluoromethyl-4,5-dicyanoimidazolide, an electrolyte salt for Li-ion cells. United States: N. p., 2016. Web. doi:10.1021/acs.jpcc.6b09837.
Shkrob, Ilya A., Pupek, Krzysztof Z., Gilbert, James A., Trask, Stephen E., & Abraham, Daniel P. Chemical stability of Lithium 2-trifluoromethyl-4,5-dicyanoimidazolide, an electrolyte salt for Li-ion cells. United States. https://doi.org/10.1021/acs.jpcc.6b09837
Shkrob, Ilya A., Pupek, Krzysztof Z., Gilbert, James A., Trask, Stephen E., and Abraham, Daniel P. Thu . "Chemical stability of Lithium 2-trifluoromethyl-4,5-dicyanoimidazolide, an electrolyte salt for Li-ion cells". United States. https://doi.org/10.1021/acs.jpcc.6b09837. https://www.osti.gov/servlets/purl/1337946.
@article{osti_1337946,
title = {Chemical stability of Lithium 2-trifluoromethyl-4,5-dicyanoimidazolide, an electrolyte salt for Li-ion cells},
author = {Shkrob, Ilya A. and Pupek, Krzysztof Z. and Gilbert, James A. and Trask, Stephen E. and Abraham, Daniel P.},
abstractNote = {Lithium hexafluorophosphate (LiPF6) is ubiquitous in commercial lithium-ion batteries, but it is hydrolytically unstable and corrosive on electrode surfaces. Using a more stable salt would confer multiple benefits for high-voltage operation, but many such electrolyte systems facilitate anodic dissolution and pitting corrosion of aluminum current collectors that negate their advantages. Lithium 2-trifluoromethyl-4,5-dicyanoimidazolide (LiTDI) is a new salt that was designed specifically for high-voltage cells. In this study we demonstrate that in carbonate electrolytes, LiTDI prevents anodic dissolution of Al current collectors, which places it into a select group of corrosion inhibitors. However, we also demonstrate that LiTDI becomes reduced on lithiated graphite, undergoing sequential defluorination and yielding a thick and resistive solid-electrolyte interphase (SEI), which increases impedance and lowers electrode capacity. The mechanistic causes for this behavior are examined using computational chemistry methods in the light of recent spectroscopic studies. Here, we demonstrate that LiTDI reduction can be prevented by certain electrolyte additives, which include fluoroethylene carbonate, vinylene carbonate and lithium bis(oxalato)borate. This beneficial action is due to preferential reduction of these additives over LiTDI at a higher potential vs. Li/Li+, so the resulting SEI can prevent the direct reduction of LiTDI at lower potentials on the graphite electrode.},
doi = {10.1021/acs.jpcc.6b09837},
journal = {Journal of Physical Chemistry. C},
number = 50,
volume = 120,
place = {United States},
year = {Thu Dec 01 00:00:00 EST 2016},
month = {Thu Dec 01 00:00:00 EST 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 12 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries
journal, October 2004


Electrolytes and Interphases in Li-Ion Batteries and Beyond
journal, October 2014


Allotropic Control: How Certain Fluorinated Carbonate Electrolytes Protect Aluminum Current Collectors by Promoting the Formation of Insoluble Coordination Polymers
journal, August 2016

  • Shkrob, Ilya A.; Pupek, Krzysztof Z.; Abraham, Daniel P.
  • The Journal of Physical Chemistry C, Vol. 120, Issue 33
  • DOI: 10.1021/acs.jpcc.6b05241

Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries
journal, March 2014

  • Lin, Feng; Markus, Isaac M.; Nordlund, Dennis
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms4529

On the Electrochemical Behavior of Aluminum Electrodes in Nonaqueous Electrolyte Solutions of Lithium Salts
journal, January 2010

  • Markovsky, Boris; Amalraj, Francis; Gottlieb, Hugo E.
  • Journal of The Electrochemical Society, Vol. 157, Issue 4
  • DOI: 10.1149/1.3294774

Role of the LiPF 6 Salt for the Long-Term Stability of Silicon Electrodes in Li-Ion Batteries – A Photoelectron Spectroscopy Study
journal, January 2013

  • Philippe, Bertrand; Dedryvère, Rémi; Gorgoi, Mihaela
  • Chemistry of Materials, Vol. 25, Issue 3
  • DOI: 10.1021/cm303399v

Influence of inactive electrode components on degradation phenomena in nano-Si electrodes for Li-ion batteries
journal, September 2016


SEI Formation and Interfacial Stability of a Si Electrode in a LiTDI-Salt Based Electrolyte with FEC and VC Additives for Li-Ion Batteries
journal, June 2016

  • Lindgren, Fredrik; Xu, Chao; Niedzicki, Leszek
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 24
  • DOI: 10.1021/acsami.6b02650

Issues and challenges facing rechargeable lithium batteries
journal, November 2001

  • Tarascon, J.-M.; Armand, M.
  • Nature, Vol. 414, Issue 6861, p. 359-367
  • DOI: 10.1038/35104644

Building better batteries
journal, February 2008

  • Armand, M.; Tarascon, J.-M.
  • Nature, Vol. 451, Issue 7179, p. 652-657
  • DOI: 10.1038/451652a

Recent progress in high-voltage lithium ion batteries
journal, September 2013


Transport and Electrochemical Properties and Spectral Features of Non-Aqueous Electrolytes Containing LiFSI in Linear Carbonate Solvents
journal, January 2011

  • Li, Lifei; Zhou, Sisi; Han, Hongbo
  • Journal of The Electrochemical Society, Vol. 158, Issue 2
  • DOI: 10.1149/1.3514705

Corrosion/passivation of aluminum current collector in bis(fluorosulfonyl)imide-based ionic liquid for lithium-ion batteries
journal, August 2012


Corrosion of Aluminum Current Collectors in High-Power Lithium-Ion Batteries for Use in Hybrid Electric Vehicles
journal, January 2007

  • Hyams, Tzipi Cohen; Go, John; Devine, Thomas M.
  • Journal of The Electrochemical Society, Vol. 154, Issue 8
  • DOI: 10.1149/1.2742321

Electrochemical behavior and passivation of current collectors in lithium-ion batteries
journal, January 2011

  • Myung, Seung-Taek; Hitoshi, Yashiro; Sun, Yang-Kook
  • Journal of Materials Chemistry, Vol. 21, Issue 27
  • DOI: 10.1039/c0jm04353b

Aluminum Corrosion in Lithium Batteries An Investigation Using the Electrochemical Quartz Crystal Microbalance
journal, January 2000

  • Yang, Haesik; Kwon, Kyungjung; Devine, Thomas M.
  • Journal of The Electrochemical Society, Vol. 147, Issue 12
  • DOI: 10.1149/1.1394077

Suppression of aluminum current collector corrosion in ionic liquid containing electrolytes
journal, September 2012


Mechanism of Anodic Dissolution of the Aluminum Current Collector in 1 M LiTFSI EC:DEC 3:7 in Rechargeable Lithium Batteries
journal, December 2012

  • Krämer, Elisabeth; Schedlbauer, Tanja; Hoffmann, Björn
  • Journal of The Electrochemical Society, Vol. 160, Issue 2
  • DOI: 10.1149/2.081302jes

Current Collectors for Positive Electrodes of Lithium-Based Batteries
journal, January 2005

  • Whitehead, Adam H.; Schreiber, Martha
  • Journal of The Electrochemical Society, Vol. 152, Issue 11
  • DOI: 10.1149/1.2039587

New type of imidazole based salts designed specifically for lithium ion batteries
journal, January 2010


Lithium cation conducting TDI anion-based ionic liquids
journal, January 2014

  • Niedzicki, Leszek; Karpierz, Ewelina; Zawadzki, Maciej
  • Phys. Chem. Chem. Phys., Vol. 16, Issue 23
  • DOI: 10.1039/c3cp55354j

New covalent salts of the 4+V class for Li batteries
journal, October 2011


Optimization of the lithium-ion cell electrolyte composition through the use of the LiTDI salt
journal, January 2014


LiTDI and solvent mixture based electrolytes for lithium-ion cells
journal, August 2015


Anion Coordination Interactions in Solvates with the Lithium Salts LiDCTA and LiTDI
journal, April 2014

  • McOwen, Dennis W.; Delp, Samuel A.; Paillard, Elie
  • The Journal of Physical Chemistry C, Vol. 118, Issue 15
  • DOI: 10.1021/jp412601x

In-Depth Interfacial Chemistry and Reactivity Focused Investigation of Lithium–Imide- and Lithium–Imidazole-Based Electrolytes
journal, June 2016

  • Eshetu, Gebrekidan Gebresilassie; Diemant, Thomas; Grugeon, Sylvie
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 25
  • DOI: 10.1021/acsami.6b04406

A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries
journal, September 2010


Reduction of Carbonate Electrolytes and the Formation of Solid-Electrolyte Interface (SEI) in Lithium-Ion Batteries. 2. Radiolytically Induced Polymerization of Ethylene Carbonate
journal, September 2013

  • Shkrob, Ilya A.; Zhu, Ye; Marin, Timothy W.
  • The Journal of Physical Chemistry C, Vol. 117, Issue 38, p. 19270-19279
  • DOI: 10.1021/jp406273p

Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density
journal, January 1988


Density-functional exchange-energy approximation with correct asymptotic behavior
journal, September 1988


On the performance of the semiempirical quantum mechanical PM6 and PM7 methods for noncovalent interactions
journal, May 2013


GPU Linear Algebra Libraries and GPGPU Programming for Accelerating MOPAC Semiempirical Quantum Chemistry Calculations
journal, August 2012

  • Maia, Julio Daniel Carvalho; Urquiza Carvalho, Gabriel Aires; Mangueira, Carlos Peixoto
  • Journal of Chemical Theory and Computation, Vol. 8, Issue 9
  • DOI: 10.1021/ct3004645

Exceptional chemical and thermal stability of zeolitic imidazolate frameworks
journal, June 2006

  • Park, K. S.; Ni, Z.; Cote, A. P.
  • Proceedings of the National Academy of Sciences, Vol. 103, Issue 27, p. 10186-10191
  • DOI: 10.1073/pnas.0602439103

Synthesis, Structure, and Carbon Dioxide Capture Properties of Zeolitic Imidazolate Frameworks
journal, January 2010

  • Phan, Anh; Doonan, Christian J.; Uribe-Romo, Fernando J.
  • Accounts of Chemical Research, Vol. 43, Issue 1, p. 58-67
  • DOI: 10.1021/ar900116g

Indium Imidazolate Frameworks with Differently Distorted ReO 3 -Type Structures: Syntheses, Structures, Phase Transitions, and Crystallization Studies
journal, August 2014

  • Schweinefuß, Maria E.; Baburin, Igor A.; Schröder, Christian A.
  • Crystal Growth & Design, Vol. 14, Issue 9
  • DOI: 10.1021/cg5007499

Ln-Imidazolate Frameworks: The Coordinative Demand of Ln 3+ Ions and its Consequences for the Compound Constitution of Different Lanthanides
journal, November 2012

  • Zurawski, Alexander; Rybak, Jens-Christoph; Meyer, Larissa V.
  • Zeitschrift für anorganische und allgemeine Chemie, Vol. 639, Issue 2
  • DOI: 10.1002/zaac.201200428

Thiourea Derivatives as Potent Inhibitors of Aluminum Corrosion: Atomic-Level Insight into Adsorption and Inhibition Mechanisms
journal, January 2016

  • Weder, Nicola; Alberto, Roger; Koitz, Ralph
  • The Journal of Physical Chemistry C, Vol. 120, Issue 3
  • DOI: 10.1021/acs.jpcc.5b11750

Effect of electrolyte composition on initial cycling and impedance characteristics of lithium-ion cells
journal, May 2008


Mechanistic Insight into the Protective Action of Bis(oxalato)borate and Difluoro(oxalate)borate Anions in Li-Ion Batteries.
journal, October 2013

  • Shkrob, Ilya A.; Zhu, Ye; Marin, Timothy W.
  • The Journal of Physical Chemistry C, Vol. 117, Issue 45
  • DOI: 10.1021/jp407714p

Why Bis(fluorosulfonyl)imide Is a “Magic Anion” for Electrochemistry
journal, August 2014

  • Shkrob, Ilya A.; Marin, Timothy W.; Zhu, Ye
  • The Journal of Physical Chemistry C, Vol. 118, Issue 34
  • DOI: 10.1021/jp506567p

What Makes Fluoroethylene Carbonate Different?
journal, June 2015

  • Shkrob, Ilya A.; Wishart, James F.; Abraham, Daniel P.
  • The Journal of Physical Chemistry C, Vol. 119, Issue 27
  • DOI: 10.1021/acs.jpcc.5b03591

In Situ and Quantitative Characterization of Solid Electrolyte Interphases
journal, February 2014

  • Cresce, Arthur v.; Russell, Selena M.; Baker, David R.
  • Nano Letters, Vol. 14, Issue 3
  • DOI: 10.1021/nl404471v

Modeling Electrochemical Decomposition of Fluoroethylene Carbonate on Silicon Anode Surfaces in Lithium Ion Batteries
journal, December 2013

  • Leung, Kevin; Rempe, Susan B.; Foster, Michael E.
  • Journal of The Electrochemical Society, Vol. 161, Issue 3
  • DOI: 10.1149/2.092401jes

Reduction Mechanisms of Ethylene Carbonate on Si Anodes of Lithium-Ion Batteries: Effects of Degree of Lithiation and Nature of Exposed Surface
journal, November 2013

  • Martinez de la Hoz, Julibeth M.; Leung, Kevin; Balbuena, Perla B.
  • ACS Applied Materials & Interfaces, Vol. 5, Issue 24
  • DOI: 10.1021/am404365r

Effect of the Electrolyte Composition on SEI Reactions at Si Anodes of Li-Ion Batteries
journal, March 2015

  • Martinez de la Hoz, Julibeth M.; Soto, Fernando A.; Balbuena, Perla B.
  • The Journal of Physical Chemistry C, Vol. 119, Issue 13
  • DOI: 10.1021/acs.jpcc.5b01228

Reduction mechanisms of additives on Si anodes of Li-ion batteries
journal, January 2014

  • Martínez de la Hoz, Julibeth M.; Balbuena, Perla B.
  • Phys. Chem. Chem. Phys., Vol. 16, Issue 32
  • DOI: 10.1039/C4CP01948B

Works referencing / citing this record:

The Role of LiTDI Additive in LiNi 1/3 Mn 1/3 Co 1/3 O 2 /Graphite Lithium-Ion Batteries at Elevated Temperatures
journal, January 2018

  • Xu, Chao; Jeschull, Fabian; Brant, William R.
  • Journal of The Electrochemical Society, Vol. 165, Issue 2
  • DOI: 10.1149/2.0231802jes

Chemically soft solid electrolyte interphase forming additives for lithium-ion batteries
journal, January 2018

  • Jankowski, Piotr; Poterała, Marcin; Lindahl, Niklas
  • Journal of Materials Chemistry A, Vol. 6, Issue 45
  • DOI: 10.1039/c8ta07936f