skip to main content

DOE PAGESDOE PAGES

Title: Nanoscale mapping of electromechanical response in ionic conductive ceramics with piezoelectric inclusions

Electromechanical (EM) response in ion conductive ceramics with piezoelectric inclusions was spatially explored using strain-based atomic force microscopy. Since the sample is composed of two dominant phases of ionic and piezoelectric phases, it allows us to explore two different EM responses of electrically induced ionic response and piezoresponse over the same surface. Furthermore, EM response of the ionic phase, i.e., electrochemical strain, was quantitatively investigated from the comparison with that of the piezoelectric phase, i.e., piezoresponse. Finally, these results could provide additional information on the EM properties, including the electrochemical strain at nanoscale.
Authors:
 [1] ;  [1] ;  [2] ;  [1]
  1. Sungkyunkwan Univ., Suwon (South Korea)
  2. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Publication Date:
Grant/Contract Number:
AC05-00OR22725
Type:
Accepted Manuscript
Journal Name:
Journal of Applied Physics
Additional Journal Information:
Journal Volume: 118; Journal Issue: 7; Journal ID: ISSN 0021-8979
Publisher:
American Institute of Physics (AIP)
Research Org:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS)
Sponsoring Org:
USDOE
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; piezoresponse force microscopy; electrochemical strain microscopy; ion conductive ceramics; electrochemical strain coefficient
OSTI Identifier:
1337834