DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Measurement of Richtmyer–Meshkov mode coupling under steady shock conditions and at high energy density

Abstract

We present experiments observing Richtmyer-Meshkov mode coupling and bubble competition in a system arising from wellcharacterized initial conditions and driven by a strong (Mach ~8) shock. These measurements and the analysis method developed to interpret them provide an important step towards the possibility of observing self-similarity under such conditions, as well as a general platform for performing and analyzing hydrodynamic instability experiments. Here, a key feature of these experiments is that the shock is sustained su ciently long that this nonlinear behavior occurs without decay of the shock velocity or other hydrodynamic properties of the system, which facilitates analysis and allows the results to be used in the study of analytic models.

Authors:
ORCiD logo [1];  [2];  [3];  [3];  [3]
  1. Univ. of Michigan, Ann Arbor, MI (United States); Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  2. Univ. of Michigan, Ann Arbor, MI (United States); Nuclear Research Center, Beer-Sheva (Israel)
  3. Univ. of Michigan, Ann Arbor, MI (United States)
Publication Date:
Research Org.:
Los Alamos National Laboratory (LANL), Los Alamos, NM (United States); Univ. of Michigan, Ann Arbor, MI (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA); USDOE Office of Science (SC), Fusion Energy Sciences (FES)
OSTI Identifier:
1329895
Alternate Identifier(s):
OSTI ID: 1252565; OSTI ID: 1337788
Report Number(s):
LA-UR-15-26239
Journal ID: ISSN 1574-1818
Grant/Contract Number:  
AC52-06NA25396; NA0001840; NA0002032; FC52-08NA28302
Resource Type:
Accepted Manuscript
Journal Name:
High Energy Density Physics
Additional Journal Information:
Journal Volume: 17; Journal Issue: PB; Journal ID: ISSN 1574-1818
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; hydrodynamic instability; laser; Richtmyer–Meshkov; shock waves; laboratory experiments; 70 PLASMA PHYSICS AND FUSION TECHNOLOGY

Citation Formats

Di Stefano, Carlos A., Malamud, G., Kuranz, C. C., Klein, S. R., and Drake, R. P. Measurement of Richtmyer–Meshkov mode coupling under steady shock conditions and at high energy density. United States: N. p., 2015. Web. doi:10.1016/j.hedp.2015.09.001.
Di Stefano, Carlos A., Malamud, G., Kuranz, C. C., Klein, S. R., & Drake, R. P. Measurement of Richtmyer–Meshkov mode coupling under steady shock conditions and at high energy density. United States. https://doi.org/10.1016/j.hedp.2015.09.001
Di Stefano, Carlos A., Malamud, G., Kuranz, C. C., Klein, S. R., and Drake, R. P. Mon . "Measurement of Richtmyer–Meshkov mode coupling under steady shock conditions and at high energy density". United States. https://doi.org/10.1016/j.hedp.2015.09.001. https://www.osti.gov/servlets/purl/1329895.
@article{osti_1329895,
title = {Measurement of Richtmyer–Meshkov mode coupling under steady shock conditions and at high energy density},
author = {Di Stefano, Carlos A. and Malamud, G. and Kuranz, C. C. and Klein, S. R. and Drake, R. P.},
abstractNote = {We present experiments observing Richtmyer-Meshkov mode coupling and bubble competition in a system arising from wellcharacterized initial conditions and driven by a strong (Mach ~8) shock. These measurements and the analysis method developed to interpret them provide an important step towards the possibility of observing self-similarity under such conditions, as well as a general platform for performing and analyzing hydrodynamic instability experiments. Here, a key feature of these experiments is that the shock is sustained su ciently long that this nonlinear behavior occurs without decay of the shock velocity or other hydrodynamic properties of the system, which facilitates analysis and allows the results to be used in the study of analytic models.},
doi = {10.1016/j.hedp.2015.09.001},
journal = {High Energy Density Physics},
number = PB,
volume = 17,
place = {United States},
year = {Mon Oct 19 00:00:00 EDT 2015},
month = {Mon Oct 19 00:00:00 EDT 2015}
}

Journal Article:

Citation Metrics:
Cited by: 22 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Taylor instability in shock acceleration of compressible fluids
journal, May 1960

  • Richtmyer, Robert D.
  • Communications on Pure and Applied Mathematics, Vol. 13, Issue 2
  • DOI: 10.1002/cpa.3160130207

Instability of the interface of two gases accelerated by a shock wave
journal, January 1972


Basic hydrodynamics of Richtmyer–Meshkov-type growth and oscillations in the inertial confinement fusion-relevant conditions
journal, April 2010

  • Aglitskiy, Y.; Velikovich, A. L.; Karasik, M.
  • Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 368, Issue 1916
  • DOI: 10.1098/rsta.2009.0131

An Evaluation of the Richtmyer‐Meshkov Instability in Supernova Remnant Formation
journal, January 1999

  • Kane, J.; Drake, R. P.; Remington, B. A.
  • The Astrophysical Journal, Vol. 511, Issue 1
  • DOI: 10.1086/306685

The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I
journal, March 1950

  • Taylor, Geoffrey Ingram
  • Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, Vol. 201, Issue 1065, p. 192-196
  • DOI: 10.1098/rspa.1950.0052

The hydrodynamics of Type II supernovae
journal, July 1976

  • Chevalier, R. A.
  • The Astrophysical Journal, Vol. 207
  • DOI: 10.1086/154557

An experimental testbed for the study of hydrodynamic issues in supernovae
journal, May 2001

  • Robey, H. F.; Kane, J. O.; Remington, B. A.
  • Physics of Plasmas, Vol. 8, Issue 5
  • DOI: 10.1063/1.1352594

Richtmyer-Meshkov evolution under steady shock conditions in the high-energy-density regime
journal, March 2015

  • Di Stefano, C. A.; Malamud, G.; Kuranz, C. C.
  • Applied Physics Letters, Vol. 106, Issue 11
  • DOI: 10.1063/1.4915303

Scale invariant mixing rates of hydrodynamically unstable interfaces
journal, May 1994


Power Laws and Similarity of Rayleigh-Taylor and Richtmyer-Meshkov Mixing Fronts at All Density Ratios
journal, January 1995


A design of a two-dimensional, multimode RM experiment on OMEGA-EP
journal, March 2013


Nonlinear evolution of the Rayleigh–Taylor and Richtmyer–Meshkov instabilities
journal, May 1999


Dimensionality dependence of the Rayleigh–Taylor and Richtmyer–Meshkov instability late-time scaling laws
journal, June 2001

  • Oron, D.; Arazi, L.; Kartoon, D.
  • Physics of Plasmas, Vol. 8, Issue 6
  • DOI: 10.1063/1.1362529

A membraneless experiment for the study of Richtmyer–Meshkov instability of a shock-accelerated gas interface
journal, October 1997

  • Jones, M. A.; Jacobs, J. W.
  • Physics of Fluids, Vol. 9, Issue 10
  • DOI: 10.1063/1.869416

PLIF flow visualization and measurements of the Richtmyer–Meshkov instability of an air/SF 6 interface
journal, August 2002


Study of Nonlinear Evolution of Single-Mode and Two-Bubble Interaction under Richtmyer-Meshkov Instability
journal, February 1998


Effect of shock proximity on Richtmyer–Meshkov growth
journal, May 2003

  • Glendinning, S. G.; Bolstad, J.; Braun, D. G.
  • Physics of Plasmas, Vol. 10, Issue 5
  • DOI: 10.1063/1.1562165

Multimode Rayleigh-Taylor Experiments on Nova
journal, July 1994


Numerical Investigation of the Stability of a Shock-Accelerated Interface between Two Fluids
journal, January 1972


Small amplitude theory of Richtmyer–Meshkov instability
journal, May 1994

  • Yang, Yumin; Zhang, Qiang; Sharp, David H.
  • Physics of Fluids, Vol. 6, Issue 5
  • DOI: 10.1063/1.868245

Asymptotic growth in the linear Richtmyer–Meshkov instability
journal, April 1997

  • Wouchuk, Juan Gustavo; Nishihara, Katsunobu
  • Physics of Plasmas, Vol. 4, Issue 4
  • DOI: 10.1063/1.872191

Impulsive model for the Richtmyer-Meshkov instability
journal, August 1998

  • Vandenboomgaerde, Marc; Mügler, Claude; Gauthier, Serge
  • Physical Review E, Vol. 58, Issue 2
  • DOI: 10.1103/PhysRevE.58.1874

An analytical nonlinear theory of Richtmyer-Meshkov instability
journal, March 1996


Nonlinear theory of unstable fluid mixing driven by shock wave
journal, April 1997

  • Zhang, Qiang; Sohn, Sung-Ik
  • Physics of Fluids, Vol. 9, Issue 4
  • DOI: 10.1063/1.869202

Design and modeling of ignition targets for the National Ignition Facility
journal, June 1995

  • Haan, Steven W.; Pollaine, Stephen M.; Lindl, John D.
  • Physics of Plasmas, Vol. 2, Issue 6
  • DOI: 10.1063/1.871209

Potential flow models of Rayleigh–Taylor and Richtmyer–Meshkov bubble fronts
journal, December 1994

  • Hecht, Jacob; Alon, Uri; Shvarts, Dov
  • Physics of Fluids, Vol. 6, Issue 12
  • DOI: 10.1063/1.868391

Modal model for the nonlinear multimode Rayleigh–Taylor instability
journal, August 1996

  • Ofer, D.; Alon, U.; Shvarts, D.
  • Physics of Plasmas, Vol. 3, Issue 8
  • DOI: 10.1063/1.871655

A spherical crystal imager for OMEGA EP
journal, March 2012

  • Stoeckl, C.; Fiksel, G.; Guy, D.
  • Review of Scientific Instruments, Vol. 83, Issue 3
  • DOI: 10.1063/1.3693348

HYADES—A plasma hydrodynamics code for dense plasma studies
journal, January 1994

  • Larsen, Jon T.; Lane, Stephen M.
  • Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 51, Issue 1-2
  • DOI: 10.1016/0022-4073(94)90078-7

A design of a two-dimensional, supersonic KH experiment on OMEGA-EP
journal, December 2013


Fully Threaded Tree Algorithms for Adaptive Refinement Fluid Dynamics Simulations
journal, July 1998


A High-Order Godunov Method for Multiple Condensed Phases
journal, October 1996

  • Miller, Gregory Hale; Puckett, Elbridge Gerry
  • Journal of Computational Physics, Vol. 128, Issue 1
  • DOI: 10.1006/jcph.1996.0200

The influence of initial conditions on turbulent mixing due to Richtmyer–Meshkov instability
journal, May 2010


Richtmyer-Meshkov experiments on the Nova laser at high compression
journal, March 1993


Observation of a Kelvin-Helmholtz Instability in a High-Energy-Density Plasma on the Omega Laser
journal, July 2009


Works referencing / citing this record:

Observation of dual-mode, Kelvin-Helmholtz instability vortex merger in a compressible flow
journal, May 2017

  • Wan, W. C.; Malamud, G.; Shimony, A.
  • Physics of Plasmas, Vol. 24, Issue 5
  • DOI: 10.1063/1.4982061

Molecular-dynamics simulation of Richtmyer-Meshkov instability on a Li-H 2 interface at extreme compressing conditions
journal, June 2018

  • Huang, Shenghong; Wang, Weirong; Luo, Xisheng
  • Physics of Plasmas, Vol. 25, Issue 6
  • DOI: 10.1063/1.5018845

Reynolds number effects on the single-mode Richtmyer-Meshkov instability
journal, January 2017


Shock-driven discrete vortex evolution on a high-Atwood number oblique interface
journal, March 2018

  • Rasmus, A. M.; Di Stefano, C. A.; Flippo, K. A.
  • Physics of Plasmas, Vol. 25, Issue 3
  • DOI: 10.1063/1.5021800

Richtmyer–Meshkov instability on a quasi-single-mode interface
journal, June 2019

  • Liang, Yu; Zhai, Zhigang; Ding, Juchun
  • Journal of Fluid Mechanics, Vol. 872
  • DOI: 10.1017/jfm.2019.416

Shock-driven hydrodynamic instability of a sinusoidally perturbed, high-Atwood number, oblique interface
journal, June 2019

  • Rasmus, A. M.; Di Stefano, C. A.; Flippo, K. A.
  • Physics of Plasmas, Vol. 26, Issue 6
  • DOI: 10.1063/1.5093650

Turbulent transport and mixing in the multimode narrowband Richtmyer-Meshkov instability
journal, September 2019

  • Thornber, B.; Griffond, J.; Bigdelou, P.
  • Physics of Fluids, Vol. 31, Issue 9
  • DOI: 10.1063/1.5111681