DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Richtmyer-Meshkov evolution under steady shock conditions in the high-energy-density regime

Abstract

This work presents direct experimental evidence of long-predicted nonlinear aspects of the Richtmyer-Meshkov (RM) process, in which new modes first arise from the coupling of initially-present modes, and in which shorter-wavelength modes are eventually overtaken by longer-wavelength modes. This is accomplished using a technique we developed employing a long driving laser pulse to create a strong (Mach ~ 8) shock across a well-characterized material interface seeded by a two-mode sinusoidal perturbation. Furthermore, this technique further permits the shock to be sustained, without decay of the high-energy-density flow conditions, long enough for the system to evolve into the nonlinear phase.

Authors:
 [1];  [2];  [1];  [1];  [3]; ORCiD logo [1]
  1. Univ. of Michigan, Ann Arbor, MI (United States)
  2. Univ. of Michigan, Ann Arbor, MI (United States); Nuclear Research Center - Negev, Beer-Sheva (Israel)
  3. Univ. of Rochester, Rochester, NY (United States)
Publication Date:
Research Org.:
Univ. of Michigan, Ann Arbor, MI (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA), Office of Defense Programs (DP)
OSTI Identifier:
1337787
Grant/Contract Number:  
NA0002032
Resource Type:
Accepted Manuscript
Journal Name:
Applied Physics Letters
Additional Journal Information:
Journal Volume: 106; Journal Issue: 11; Journal ID: ISSN 0003-6951
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY

Citation Formats

Di Stefano, C. A., Malamud, G., Kuranz, C. C., Klein, S. R., Stoeckl, C., and Drake, R. P. Richtmyer-Meshkov evolution under steady shock conditions in the high-energy-density regime. United States: N. p., 2015. Web. doi:10.1063/1.4915303.
Di Stefano, C. A., Malamud, G., Kuranz, C. C., Klein, S. R., Stoeckl, C., & Drake, R. P. Richtmyer-Meshkov evolution under steady shock conditions in the high-energy-density regime. United States. https://doi.org/10.1063/1.4915303
Di Stefano, C. A., Malamud, G., Kuranz, C. C., Klein, S. R., Stoeckl, C., and Drake, R. P. Tue . "Richtmyer-Meshkov evolution under steady shock conditions in the high-energy-density regime". United States. https://doi.org/10.1063/1.4915303. https://www.osti.gov/servlets/purl/1337787.
@article{osti_1337787,
title = {Richtmyer-Meshkov evolution under steady shock conditions in the high-energy-density regime},
author = {Di Stefano, C. A. and Malamud, G. and Kuranz, C. C. and Klein, S. R. and Stoeckl, C. and Drake, R. P.},
abstractNote = {This work presents direct experimental evidence of long-predicted nonlinear aspects of the Richtmyer-Meshkov (RM) process, in which new modes first arise from the coupling of initially-present modes, and in which shorter-wavelength modes are eventually overtaken by longer-wavelength modes. This is accomplished using a technique we developed employing a long driving laser pulse to create a strong (Mach ~ 8) shock across a well-characterized material interface seeded by a two-mode sinusoidal perturbation. Furthermore, this technique further permits the shock to be sustained, without decay of the high-energy-density flow conditions, long enough for the system to evolve into the nonlinear phase.},
doi = {10.1063/1.4915303},
journal = {Applied Physics Letters},
number = 11,
volume = 106,
place = {United States},
year = {Tue Mar 17 00:00:00 EDT 2015},
month = {Tue Mar 17 00:00:00 EDT 2015}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 24 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Experiments on the late-time development of single-mode Richtmyer–Meshkov instability
journal, March 2005

  • Jacobs, J. W.; Krivets, V. V.
  • Physics of Fluids, Vol. 17, Issue 3
  • DOI: 10.1063/1.1852574

Turbulent mixing measurements in the Richtmyer-Meshkov instability
journal, July 2012

  • Weber, Christopher; Haehn, Nicholas; Oakley, Jason
  • Physics of Fluids, Vol. 24, Issue 7
  • DOI: 10.1063/1.4733447

Growth rate of the linear Richtmyer-Meshkov instability when a shock is reflected
journal, April 2001


An analytical nonlinear theory of Richtmyer-Meshkov instability
journal, March 1996


A membraneless experiment for the study of Richtmyer–Meshkov instability of a shock-accelerated gas interface
journal, October 1997

  • Jones, M. A.; Jacobs, J. W.
  • Physics of Fluids, Vol. 9, Issue 10
  • DOI: 10.1063/1.869416

Asymptotic growth in the linear Richtmyer–Meshkov instability
journal, April 1997

  • Wouchuk, Juan Gustavo; Nishihara, Katsunobu
  • Physics of Plasmas, Vol. 4, Issue 4
  • DOI: 10.1063/1.872191

The hydrodynamics of Type II supernovae
journal, July 1976

  • Chevalier, R. A.
  • The Astrophysical Journal, Vol. 207
  • DOI: 10.1086/154557

An Evaluation of the Richtmyer‐Meshkov Instability in Supernova Remnant Formation
journal, January 1999

  • Kane, J.; Drake, R. P.; Remington, B. A.
  • The Astrophysical Journal, Vol. 511, Issue 1
  • DOI: 10.1086/306685

OMEGA EP high-energy petawatt laser: progress and prospects
journal, May 2008


Basic hydrodynamics of Richtmyer–Meshkov-type growth and oscillations in the inertial confinement fusion-relevant conditions
journal, April 2010

  • Aglitskiy, Y.; Velikovich, A. L.; Karasik, M.
  • Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 368, Issue 1916
  • DOI: 10.1098/rsta.2009.0131

A spherical crystal imager for OMEGA EP
journal, March 2012

  • Stoeckl, C.; Fiksel, G.; Guy, D.
  • Review of Scientific Instruments, Vol. 83, Issue 3
  • DOI: 10.1063/1.3693348

A High-Order Godunov Method for Multiple Condensed Phases
journal, October 1996

  • Miller, Gregory Hale; Puckett, Elbridge Gerry
  • Journal of Computational Physics, Vol. 128, Issue 1
  • DOI: 10.1006/jcph.1996.0200

Numerical Investigation of the Stability of a Shock-Accelerated Interface between Two Fluids
journal, January 1972


Small amplitude theory of Richtmyer–Meshkov instability
journal, May 1994

  • Yang, Yumin; Zhang, Qiang; Sharp, David H.
  • Physics of Fluids, Vol. 6, Issue 5
  • DOI: 10.1063/1.868245

A design of a two-dimensional, multimode RM experiment on OMEGA-EP
journal, March 2013


Fully Threaded Tree Algorithms for Adaptive Refinement Fluid Dynamics Simulations
journal, July 1998


Effect of shock proximity on Richtmyer–Meshkov growth
journal, May 2003

  • Glendinning, S. G.; Bolstad, J.; Braun, D. G.
  • Physics of Plasmas, Vol. 10, Issue 5
  • DOI: 10.1063/1.1562165

Potential flow models of Rayleigh–Taylor and Richtmyer–Meshkov bubble fronts
journal, December 1994

  • Hecht, Jacob; Alon, Uri; Shvarts, Dov
  • Physics of Fluids, Vol. 6, Issue 12
  • DOI: 10.1063/1.868391

Shock tube experiments and numerical simulation of the single-mode, three-dimensional Richtmyer–Meshkov instability
journal, November 2009

  • Long, C. C.; Krivets, V. V.; Greenough, J. A.
  • Physics of Fluids, Vol. 21, Issue 11
  • DOI: 10.1063/1.3263705

Taylor instability in shock acceleration of compressible fluids
journal, May 1960

  • Richtmyer, Robert D.
  • Communications on Pure and Applied Mathematics, Vol. 13, Issue 2
  • DOI: 10.1002/cpa.3160130207

Nonlinear theory of unstable fluid mixing driven by shock wave
journal, April 1997

  • Zhang, Qiang; Sohn, Sung-Ik
  • Physics of Fluids, Vol. 9, Issue 4
  • DOI: 10.1063/1.869202

HYADES—A plasma hydrodynamics code for dense plasma studies
journal, January 1994

  • Larsen, Jon T.; Lane, Stephen M.
  • Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 51, Issue 1-2
  • DOI: 10.1016/0022-4073(94)90078-7

He 3 flow in dilute 4 3 He mixtures at temperatures between 10 and 150 mK
journal, September 1985

  • Castelijns, C. A. M.; Kuerten, J. G. M.; de Waele, A. T. A. M.
  • Physical Review B, Vol. 32, Issue 5
  • DOI: 10.1103/physrevb.32.2870

Instability of the interface of two gases accelerated by a shock wave
journal, January 1972


Study of Nonlinear Evolution of Single-Mode and Two-Bubble Interaction under Richtmyer-Meshkov Instability
journal, February 1998


Experimental study of the Richtmyer–Meshkov instability of incompressible fluids
journal, May 2003


Richtmyer-Meshkov experiments on the Nova laser at high compression
journal, March 1993


PLIF flow visualization and measurements of the Richtmyer–Meshkov instability of an air/SF 6 interface
journal, August 2002


Multimode Rayleigh-Taylor Experiments on Nova
journal, July 1994


The influence of initial conditions on turbulent mixing due to Richtmyer–Meshkov instability
journal, May 2010


Works referencing / citing this record:

The modeling of delayed-onset Rayleigh-Taylor and transition to mixing in laser-driven HED experiments
journal, May 2019

  • Di Stefano, C. A.; Doss, F. W.; Rasmus, A. M.
  • Physics of Plasmas, Vol. 26, Issue 5
  • DOI: 10.1063/1.5085332

Shock-driven discrete vortex evolution on a high-Atwood number oblique interface
journal, March 2018

  • Rasmus, A. M.; Di Stefano, C. A.; Flippo, K. A.
  • Physics of Plasmas, Vol. 25, Issue 3
  • DOI: 10.1063/1.5021800

Shock-driven hydrodynamic instability of a sinusoidally perturbed, high-Atwood number, oblique interface
journal, June 2019

  • Rasmus, A. M.; Di Stefano, C. A.; Flippo, K. A.
  • Physics of Plasmas, Vol. 26, Issue 6
  • DOI: 10.1063/1.5093650

Linear theory of Richtmyer–Meshkov like flows
journal, November 2016


Molecular-dynamics simulation of Richtmyer-Meshkov instability on a Li-H 2 interface at extreme compressing conditions
journal, June 2018

  • Huang, Shenghong; Wang, Weirong; Luo, Xisheng
  • Physics of Plasmas, Vol. 25, Issue 6
  • DOI: 10.1063/1.5018845