skip to main content

DOE PAGESDOE PAGES

Title: Kinetic simulations of scrape-off layer physics in the DIII-D tokamak

Simulations using the fully kinetic code XGCa were undertaken to explore the impact of kinetic effects on scrape-off layer (SOL) physics in DIII-D H-mode plasmas. XGCa is a total- f, gyrokinetic code which self-consistently calculates the axisymmetric electrostatic potential and plasma dynamics, and includes modules for Monte Carlo neutral transport. Fluid simulations are normally used to simulate the SOL, due to its high collisionality. However, depending on plasma conditions, a number of discrepancies have been observed between experiment and leading SOL fluid codes (e.g. SOLPS), including underestimating outer target temperatures, radial electric field in the SOL, parallel ion SOL flows at the low field side, and impurity radiation. Many of these discrepancies may be linked to the fluid treatment, and might be resolved by including kinetic effects in SOL simulations. The XGCa simulation of the DIII-D tokamak in a nominally sheath-limited regime show many noteworthy features in the SOL. The density and ion temperature are higher at the low-field side, indicative of ion orbit loss. The SOL ion Mach flows are at experimentally relevant levels ( Mi ~0.5), with similar shapes and poloidal variation as observed in various tokamaks. Surprisingly, the ion Mach flows close to the sheath edge remainmore » subsonic, in contrast to the typical fluid Bohm criterion requiring ion flows to be above sonic at the sheath edge. Related to this are the presence of elevated sheath potentials, eΔΦ/T e ~ 3–4, over most of the SOL, with regions in the near-SOL close to the separatrix having eΔΦ/Te > 4. Finally, these two results at the sheath edge are a consequence of non-Maxwellian features in the ions and electrons there.« less
Authors:
ORCiD logo [1] ;  [2] ; ORCiD logo [1] ; ORCiD logo [1] ;  [3] ; ORCiD logo [1] ;  [1] ; ORCiD logo [1]
  1. Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)
  2. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  3. General Atomics, San Diego, CA (United States)
Publication Date:
Grant/Contract Number:
AC02-09CH11466; AC05-00OR22725; FC02-04ER54698
Type:
Published Article
Journal Name:
Nuclear Materials and Energy
Additional Journal Information:
Journal Volume: 12; Journal ID: ISSN 2352-1791
Publisher:
Elsevier
Research Org:
Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); General Atomics, San Diego, CA (United States)
Sponsoring Org:
USDOE Office of Science (SC), Fusion Energy Sciences (FES) (SC-24)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY
OSTI Identifier:
1337533
Alternate Identifier(s):
OSTI ID: 1349224; OSTI ID: 1373945