skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Frequency-encoded photonic qubits for scalable quantum information processing

Abstract

Among the objectives for large-scale quantum computation is the quantum interconnect: a device that uses photons to interface qubits that otherwise could not interact. However, the current approaches require photons indistinguishable in frequency—a major challenge for systems experiencing different local environments or of different physical compositions altogether. Here, we develop an entirely new platform that actually exploits such frequency mismatch for processing quantum information. Labeled “spectral linear optical quantum computation” (spectral LOQC), our protocol offers favorable linear scaling of optical resources and enjoys an unprecedented degree of parallelism, as an arbitrary Ν-qubit quantum gate may be performed in parallel on multiple Ν-qubit sets in the same linear optical device. Here, not only does spectral LOQC offer new potential for optical interconnects, but it also brings the ubiquitous technology of high-speed fiber optics to bear on photonic quantum information, making wavelength-configurable and robust optical quantum systems within reach.

Authors:
 [1];  [1]
  1. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Laboratory Directed Research and Development (LDRD) Program
OSTI Identifier:
1337503
Grant/Contract Number:  
AC05-00OR22725
Resource Type:
Accepted Manuscript
Journal Name:
Optica
Additional Journal Information:
Journal Volume: 4; Journal Issue: 1; Journal ID: ISSN 2334-2536
Publisher:
Optical Society of America
Country of Publication:
United States
Language:
English
Subject:
97 MATHEMATICS AND COMPUTING; quantum information and processing; optical interconnects; pulse shaping; phase modulation

Citation Formats

Lukens, Joseph M., and Lougovski, Pavel. Frequency-encoded photonic qubits for scalable quantum information processing. United States: N. p., 2016. Web. doi:10.1364/OPTICA.4.000008.
Lukens, Joseph M., & Lougovski, Pavel. Frequency-encoded photonic qubits for scalable quantum information processing. United States. doi:10.1364/OPTICA.4.000008.
Lukens, Joseph M., and Lougovski, Pavel. Wed . "Frequency-encoded photonic qubits for scalable quantum information processing". United States. doi:10.1364/OPTICA.4.000008. https://www.osti.gov/servlets/purl/1337503.
@article{osti_1337503,
title = {Frequency-encoded photonic qubits for scalable quantum information processing},
author = {Lukens, Joseph M. and Lougovski, Pavel},
abstractNote = {Among the objectives for large-scale quantum computation is the quantum interconnect: a device that uses photons to interface qubits that otherwise could not interact. However, the current approaches require photons indistinguishable in frequency—a major challenge for systems experiencing different local environments or of different physical compositions altogether. Here, we develop an entirely new platform that actually exploits such frequency mismatch for processing quantum information. Labeled “spectral linear optical quantum computation” (spectral LOQC), our protocol offers favorable linear scaling of optical resources and enjoys an unprecedented degree of parallelism, as an arbitrary Ν-qubit quantum gate may be performed in parallel on multiple Ν-qubit sets in the same linear optical device. Here, not only does spectral LOQC offer new potential for optical interconnects, but it also brings the ubiquitous technology of high-speed fiber optics to bear on photonic quantum information, making wavelength-configurable and robust optical quantum systems within reach.},
doi = {10.1364/OPTICA.4.000008},
journal = {Optica},
number = 1,
volume = 4,
place = {United States},
year = {2016},
month = {12}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 9 works
Citation information provided by
Web of Science

Figures / Tables:

Fig. 1. Fig. 1.: Building blocks for spectral LOQC. (a) Dual-rail qubit encoding. A single photon corresponds to |0〉L or |1〉L depending on which one of two modes it occupies. (b) Fourier-transform pulse shaper. This applies arbitrary phases to each spectral mode, physically by separating and recombining frequency components (left) and conceptuallymore » as a multimode element operating on all rails individually (right). (c) Electro-optic phase modulator. This device (left) applies an arbitrary temporal phase periodic at the inverse mode spacing . In rail form, the modulator acts as mode mixer which can move photons across frequency states (right). The labels A0 and A1 mark the zero and one modes for a representative qubit.« less

Save / Share:

Works referenced in this record:

Maximal success probabilities of linear-optical quantum gates
journal, April 2009


Quantum gates using linear optics and postselection
journal, November 2002


Searching for applications with a fine-tooth comb
journal, March 2011


Quantum computers
journal, March 2010


Ultrafast optical pulse shaping: A tutorial review
journal, July 2011


Modulation and measurement of time-energy entangled photons
journal, September 2009


32 phase×32 amplitude optical arbitrary waveform generation
journal, January 2007


Optical arbitrary waveform processing of more than 100 spectral comb lines
journal, August 2007


Amplitude and phase modulation of time-energy entangled two-photon states
journal, January 2008


Orthogonal Spectral Coding of Entangled Photons
journal, April 2014


High-Power Broadly Tunable Electrooptic Frequency Comb Generator
journal, November 2013

  • Metcalf, Andrew J.; Torres-Company, Victor; Leaird, Daniel E.
  • IEEE Journal of Selected Topics in Quantum Electronics, Vol. 19, Issue 6
  • DOI: 10.1109/JSTQE.2013.2268384

Linear Optical Quantum Computing in a Single Spatial Mode
journal, October 2013


Resource-Efficient Linear Optical Quantum Computation
journal, June 2005


Observation of Nonlocal Modulation with Entangled Photons
journal, October 2009


Ultra-Compact Silicon Photonic 512 × 512 25 GHz Arrayed Waveguide Grating Router
journal, July 2014

  • Cheung, Stanley; Okamoto, Katsunari
  • IEEE Journal of Selected Topics in Quantum Electronics, Vol. 20, Issue 4
  • DOI: 10.1109/JSTQE.2013.2295879

Current Status of Large-Scale InP Photonic Integrated Circuits
journal, November 2011

  • Kish, F. A.; Welch, D.; Nagarajan, R.
  • IEEE Journal of Selected Topics in Quantum Electronics, Vol. 17, Issue 6, p. 1470-1489
  • DOI: 10.1109/JSTQE.2011.2114873

Temporal Shaping of Entangled Photons
journal, February 2005


Femtosecond pulse shaping using spatial light modulators
journal, May 2000

  • Weiner, A. M.
  • Review of Scientific Instruments, Vol. 71, Issue 5, p. 1929-1960
  • DOI: 10.1063/1.1150614

Physics: Unite to build a quantum Internet
journal, April 2016

  • Pirandola, Stefano; Braunstein, Samuel L.
  • Nature, Vol. 532, Issue 7598
  • DOI: 10.1038/532169a

Generation of multiphoton entangled quantum states by means of integrated frequency combs
journal, March 2016


A review of lithium niobate modulators for fiber-optic communications systems
journal, January 2000

  • Wooten, E. L.; Kissa, K. M.; Yi-Yan, A.
  • IEEE Journal of Selected Topics in Quantum Electronics, Vol. 6, Issue 1
  • DOI: 10.1109/2944.826874

Photon-efficient quantum key distribution using time–energy entanglement with high-dimensional encoding
journal, February 2015


Spectral polarization and spectral phase control of time-energy entangled photons
journal, April 2007


Design, Fabrication and Characterization of an InP-Based Tunable Integrated Optical Pulse Shaper
journal, April 2008

  • Heck, Martijn J. R.; Munoz, Pascual; Tilma, Bauke W.
  • IEEE Journal of Quantum Electronics, Vol. 44, Issue 4
  • DOI: 10.1109/JQE.2007.914304

Demonstration of High-Order Dispersion Cancellation with an Ultrahigh-Efficiency Sum-Frequency Correlator
journal, November 2013


Hiding Single Photons with Spread Spectrum Technology
journal, June 2010


Scalable Generation of Graph-State Entanglement Through Realistic Linear Optics
journal, October 2006


A scheme for efficient quantum computation with linear optics
journal, January 2001

  • Knill, E.; Laflamme, R.; Milburn, G. J.
  • Nature, Vol. 409, Issue 6816
  • DOI: 10.1038/35051009

Experimental realization of any discrete unitary operator
journal, July 1994

  • Reck, Michael; Zeilinger, Anton; Bernstein, Herbert J.
  • Physical Review Letters, Vol. 73, Issue 1
  • DOI: 10.1103/PhysRevLett.73.58

Factoring Matrices into the Product of Circulant and Diagonal Matrices
journal, March 2015

  • Huhtanen, Marko; Perämäki, Allan
  • Journal of Fourier Analysis and Applications, Vol. 21, Issue 5
  • DOI: 10.1007/s00041-015-9395-0

Shaping frequency-entangled qudits
journal, September 2013


Silicon-chip source of bright photon pairs
journal, January 2015

  • Jiang, Wei C.; Lu, Xiyuan; Zhang, Jidong
  • Optics Express, Vol. 23, Issue 16
  • DOI: 10.1364/OE.23.020884

Versatile shaper-assisted discretization of energy–time entangled photons
journal, March 2014


Photon frequency-mode matching using acousto-optic frequency beam splitters
journal, March 2006


InP Photonic Integrated Circuits
journal, September 2010

  • Nagarajan, R.; Kato, M.; Pleumeekers, J.
  • IEEE Journal of Selected Topics in Quantum Electronics, Vol. 16, Issue 5
  • DOI: 10.1109/JSTQE.2009.2037828

Biphoton manipulation with a fiber-based pulse shaper
journal, January 2013

  • Lukens, Joseph M.; Dezfooliyan, Amir; Langrock, Carsten
  • Optics Letters, Vol. 38, Issue 22
  • DOI: 10.1364/OL.38.004652

Nonlocal modulation of entangled photons
journal, August 2008


Quantum interference in plasmonic circuits
journal, August 2013

  • Heeres, Reinier W.; Kouwenhoven, Leo P.; Zwiller, Valery
  • Nature Nanotechnology, Vol. 8, Issue 10
  • DOI: 10.1038/nnano.2013.150

Self-configuring universal linear optical component [Invited]
journal, January 2013


Continuous wave photon pair generation in silicon-on-insulator waveguides and ring resonators
journal, January 2009

  • Clemmen, S.; Huy, K. Phan; Bogaerts, W.
  • Optics Express, Vol. 17, Issue 19
  • DOI: 10.1364/OE.17.016558

Micrometer-scale integrated silicon source of time-energy entangled photons
journal, January 2015


Optimal mode transformations for linear-optical cluster-state generation
journal, June 2015


Ultrafast Time-Division Demultiplexing of Polarization-Entangled Photons
journal, October 2014


Ultra-low power generation of twin photons in a compact silicon ring resonator
journal, January 2012

  • Azzini, Stefano; Grassani, Davide; Strain, Michael J.
  • Optics Express, Vol. 20, Issue 21
  • DOI: 10.1364/OE.20.023100

Fourier processing of quantum light
journal, August 2012


Continuous-Variable Quantum Computing in Optical Time-Frequency Modes Using Quantum Memories
journal, September 2014


Frequency-bin entangled photons
journal, July 2010


InP-Based Integrated Optical Pulse Shaper: Demonstration of Chirp Compensation
journal, March 2013

  • Tahvili, S.; Latkowski, S.; Smalbrugge, B.
  • IEEE Photonics Technology Letters, Vol. 25, Issue 5
  • DOI: 10.1109/LPT.2013.2240383

Coherent Ultrafast Measurement of Time-Bin Encoded Photons
journal, October 2013


Fully programmable ring-resonator-based integrated photonic circuit for phase coherent applications
journal, January 2006

  • Agarwal, A.; Toliver, P.; Menendez, R.
  • Journal of Lightwave Technology, Vol. 24, Issue 1
  • DOI: 10.1109/JLT.2005.861145

Large-Alphabet Quantum Key Distribution Using Energy-Time Entangled Bipartite States
journal, February 2007


Fabrication of frequency spectrum synthesiser consisting of arrayed-waveguide grating pair and thermo-optic amplitude and phase controllers
journal, January 1999

  • Okamoto, K.; Kominato, T.; Yamada, H.
  • Electronics Letters, Vol. 35, Issue 9
  • DOI: 10.1049/el:19990518

Parallel Generation of Quadripartite Cluster Entanglement in the Optical Frequency Comb
journal, July 2011


How complicated must an optical component be?
journal, January 2013


Reconfigurable radio-frequency arbitrary waveforms synthesized in a silicon photonic chip
journal, January 2015

  • Wang, Jian; Shen, Hao; Fan, Li
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms6957

The Quantum Theory of Optical Coherence
journal, June 1963


Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper
journal, January 2010


On-chip detection of non-classical light by scalable integration of single-photon detectors
journal, January 2015

  • Najafi, Faraz; Mower, Jacob; Harris, Nicholas C.
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms6873

Wavelength-multiplexed quantum networks with ultrafast frequency combs
journal, December 2013

  • Roslund, Jonathan; de Araújo, Renné Medeiros; Jiang, Shifeng
  • Nature Photonics, Vol. 8, Issue 2
  • DOI: 10.1038/nphoton.2013.340

Generation of biphoton correlation trains through spectral filtering
journal, January 2014

  • Lukens, Joseph M.; Odele, Ogaga; Langrock, Carsten
  • Optics Express, Vol. 22, Issue 8
  • DOI: 10.1364/OE.22.009585

The quantum internet
journal, June 2008


Quantum error correction for beginners
journal, June 2013


Electro-Optic Modulation of Single Photons
journal, September 2008


    Works referencing / citing this record:

    Frequency-encoded photonic qubits for scalable quantum information processing [Supplementary Data]
    dataset, January 2017

    • Lukens, Joseph M.; Lougovski, Pavel
    • Figshare-Supplementary information for journal article at DOI: 10.1364/OPTICA.4.000008, 1 PDF (1.24 MB)
    • DOI: 10.6084/m9.figshare.c.3756569

      Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.