DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Numerical simulations of the ablative Rayleigh-Taylor instability in planar inertial-confinement-fusion targets using the FastRad3D code

Authors:
ORCiD logo [1];  [1];  [1];  [2]
  1. Plasma Physics Division, U.S. Naval Research Laboratory, Washington, DC 20375, USA
  2. Berkeley Research Associates, Inc., Beltsville, Maryland 20705, USA
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1337432
Alternate Identifier(s):
OSTI ID: 1334194
Resource Type:
Published Article
Journal Name:
Physics of Plasmas
Additional Journal Information:
Journal Name: Physics of Plasmas Journal Volume: 23 Journal Issue: 12; Journal ID: ISSN 1070-664X
Publisher:
American Institute of Physics
Country of Publication:
United States
Language:
English

Citation Formats

Bates, J. W., Schmitt, A. J., Karasik, M., and Zalesak, S. T. Numerical simulations of the ablative Rayleigh-Taylor instability in planar inertial-confinement-fusion targets using the FastRad3D code. United States: N. p., 2016. Web. doi:10.1063/1.4967944.
Bates, J. W., Schmitt, A. J., Karasik, M., & Zalesak, S. T. Numerical simulations of the ablative Rayleigh-Taylor instability in planar inertial-confinement-fusion targets using the FastRad3D code. United States. https://doi.org/10.1063/1.4967944
Bates, J. W., Schmitt, A. J., Karasik, M., and Zalesak, S. T. Thu . "Numerical simulations of the ablative Rayleigh-Taylor instability in planar inertial-confinement-fusion targets using the FastRad3D code". United States. https://doi.org/10.1063/1.4967944.
@article{osti_1337432,
title = {Numerical simulations of the ablative Rayleigh-Taylor instability in planar inertial-confinement-fusion targets using the FastRad3D code},
author = {Bates, J. W. and Schmitt, A. J. and Karasik, M. and Zalesak, S. T.},
abstractNote = {},
doi = {10.1063/1.4967944},
journal = {Physics of Plasmas},
number = 12,
volume = 23,
place = {United States},
year = {Thu Dec 01 00:00:00 EST 2016},
month = {Thu Dec 01 00:00:00 EST 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1063/1.4967944

Citation Metrics:
Cited by: 16 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Initial-value-problem solution for isolated rippled shock fronts in arbitrary fluid media
journal, May 2004


Suppression of Laser Nonuniformity Imprinting Using a Thin High- Z Coating
journal, February 2015


Measurement of Rayleigh–Taylor instability in a laser-accelerated target
journal, September 1982

  • Cole, A. J.; Kilkenny, J. D.; Rumsby, P. T.
  • Nature, Vol. 299, Issue 5881
  • DOI: 10.1038/299329a0

Slab model for Rayleigh–Taylor stabilization by vortex shedding, compressibility, thermal conduction, and ablation
journal, January 1984

  • Manheimer, Wallace M.; Colombant, Denis G.
  • Physics of Fluids, Vol. 27, Issue 4
  • DOI: 10.1063/1.864689

A review of the ablative stabilization of the Rayleigh–Taylor instability in regimes relevant to inertial confinement fusion
journal, May 1994

  • Kilkenny, J. D.; Glendinning, S. G.; Haan, S. W.
  • Physics of Plasmas, Vol. 1, Issue 5
  • DOI: 10.1063/1.870688

Self‐consistent stability analysis of ablation fronts with large Froude numbers
journal, April 1996

  • Goncharov, V. N.; Betti, R.; McCrory, R. L.
  • Physics of Plasmas, Vol. 3, Issue 4
  • DOI: 10.1063/1.871730

Steady-state planar ablative flow
journal, January 1982


Self‐consistent stability analysis of ablation fronts with small Froude numbers
journal, December 1996

  • Goncharov, V. N.; Betti, R.; McCrory, R. L.
  • Physics of Plasmas, Vol. 3, Issue 12
  • DOI: 10.1063/1.872078

Observation of Rayleigh–Taylor growth to short wavelengths on Nike
journal, February 1999

  • Pawley, C. J.; Bodner, S. E.; Dahlburg, J. P.
  • Physics of Plasmas, Vol. 6, Issue 2
  • DOI: 10.1063/1.873201

The ablation-front Rayleigh–Taylor dispersion curve in indirect drive
journal, May 2001

  • Budil, K. S.; Lasinski, B.; Edwards, M. J.
  • Physics of Plasmas, Vol. 8, Issue 5
  • DOI: 10.1063/1.1356738

Hydrodynamic target response to an induced spatial incoherence‐smoothed laser beam
journal, September 1991

  • Emery, M. H.; Gardner, J. H.; Lehmberg, R. H.
  • Physics of Fluids B: Plasma Physics, Vol. 3, Issue 9
  • DOI: 10.1063/1.859976

Self-consistent Analytical Model of the Rayleigh-Taylor Instability in Inertial Confinement Fusion
journal, November 1994


Single-mode, Rayleigh-Taylor growth-rate measurements on the OMEGA laser system
journal, January 2000

  • Knauer, J. P.; Betti, R.; Bradley, D. K.
  • Physics of Plasmas, Vol. 7, Issue 1
  • DOI: 10.1063/1.873802

Charged-particle stopping powers in inertial confinement fusion plasmas
journal, May 1993


Rayleigh-Taylor Instability and Laser-Pellet Fusion
journal, September 1974


Self-consistent growth rate of the Rayleigh–Taylor instability in an ablatively accelerating plasma
journal, January 1985

  • Takabe, H.; Mima, K.; Montierth, L.
  • Physics of Fluids, Vol. 28, Issue 12
  • DOI: 10.1063/1.865099

Incompressible description of Rayleigh–Taylor instabilities in laser‐ablated plasmas
journal, January 1989

  • Kull, H. J.
  • Physics of Fluids B: Plasma Physics, Vol. 1, Issue 1
  • DOI: 10.1063/1.859084

Stabilization of the Rayleigh–Taylor instability by convection in smooth density gradient: Wentzel–Kramers–Brillouin analysis
journal, November 1992

  • Bud’ko, A. B.; Liberman, M. A.
  • Physics of Fluids B: Plasma Physics, Vol. 4, Issue 11
  • DOI: 10.1063/1.860357

Rayleigh–Taylor instability in an inhomogeneous ablatively accelerated fluid
journal, January 1983


An Analysis of the Fractional Step Method
journal, September 1993


Direct Observation of Mass Oscillations Due to Ablative Richtmyer-Meshkov Instability in Plastic Targets
journal, December 2001


Measurements of Rayleigh-Taylor Growth Rate of Planar Targets Irradiated Directly by Partially Coherent Light
journal, January 1997


High-gain direct-drive target design for laser fusion
journal, June 2000

  • Bodner, S. E.; Colombant, D. G.; Schmitt, A. J.
  • Physics of Plasmas, Vol. 7, Issue 6
  • DOI: 10.1063/1.874063

Hydrodynamic growth and mix experiments at National Ignition Facility
journal, March 2016


Two-Dimensional Simulation of Fluid Instability in Laser-Fusion Pellets
journal, May 1975


Self‐consistent cutoff wave number of the ablative Rayleigh–Taylor instability
journal, October 1995

  • Betti, R.; Goncharov, V. N.; McCrory, R. L.
  • Physics of Plasmas, Vol. 2, Issue 10
  • DOI: 10.1063/1.871083

Effects of radiation on direct-drive laser fusion targets
journal, May 2000

  • Colombant, D. G.; Bodner, S. E.; Schmitt, A. J.
  • Physics of Plasmas, Vol. 7, Issue 5
  • DOI: 10.1063/1.874026

Rayleigh–Taylor instability of steady ablation fronts: The discontinuity model revisited
journal, April 1997

  • Piriz, A. R.; Sanz, J.; Ibañez, L. F.
  • Physics of Plasmas, Vol. 4, Issue 4
  • DOI: 10.1063/1.872200

Measurements of low-level prepulse on Nike KrF laser
journal, September 2005

  • Karasik, Max; Mostovych, A. N.; Lehmberg, R. H.
  • Journal of Applied Physics, Vol. 98, Issue 5
  • DOI: 10.1063/1.2032619

Growth rates of the ablative Rayleigh–Taylor instability in inertial confinement fusion
journal, May 1998

  • Betti, R.; Goncharov, V. N.; McCrory, R. L.
  • Physics of Plasmas, Vol. 5, Issue 5
  • DOI: 10.1063/1.872802

Direct-drive hydrodynamic instability experiments on the GEKKO XII laser
journal, November 1997

  • Azechi, H.; Nakai, M.; Shigemori, K.
  • Physics of Plasmas, Vol. 4, Issue 11
  • DOI: 10.1063/1.872528

A Method for the Numerical Calculation of Hydrodynamic Shocks
journal, March 1950

  • VonNeumann, J.; Richtmyer, R. D.
  • Journal of Applied Physics, Vol. 21, Issue 3
  • DOI: 10.1063/1.1699639

Large growth Rayleigh-Taylor experiments using shaped laser pulses
journal, December 1991


Nonlinear Evolution of Ablation-Driven Rayleigh-Taylor Instability
journal, February 1981


Flux-corrected transport. I. SHASTA, a fluid transport algorithm that works
journal, January 1973


Hydrodynamic stability and the direct drive approach to laser fusion
journal, May 1990

  • Tabak, M.; Munro, D. H.; Lindl, J. D.
  • Physics of Fluids B: Plasma Physics, Vol. 2, Issue 5
  • DOI: 10.1063/1.859274

Rayleigh-Taylor and Richtmyer-Meshkov instabilities and mixing in stratified spherical shells
journal, September 1990


Nonlinear Theory of the Ablative Rayleigh-Taylor Instability
journal, October 2002


Hydrodynamic scaling of the deceleration-phase Rayleigh–Taylor instability
journal, July 2015

  • Bose, A.; Woo, K. M.; Nora, R.
  • Physics of Plasmas, Vol. 22, Issue 7
  • DOI: 10.1063/1.4923438

Radiation‐dependent ionization model for laser‐created plasmas
journal, November 1993

  • Busquet, M.
  • Physics of Fluids B: Plasma Physics, Vol. 5, Issue 11
  • DOI: 10.1063/1.860586

Vortex shedding due to laser ablation
journal, January 1984

  • Emery, Mark H.; Gardner, John H.; Boris, Jay P.
  • Physics of Fluids, Vol. 27, Issue 5
  • DOI: 10.1063/1.864749

Basic hydrodynamics of Richtmyer–Meshkov-type growth and oscillations in the inertial confinement fusion-relevant conditions
journal, April 2010

  • Aglitskiy, Y.; Velikovich, A. L.; Karasik, M.
  • Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 368, Issue 1916
  • DOI: 10.1098/rsta.2009.0131

The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. II
journal, June 1950

  • Lewis, D. J.
  • Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, Vol. 202, Issue 1068, p. 81-96
  • DOI: 10.1098/rspa.1950.0086

Numerical simulation of ablative Rayleigh–Taylor instability
journal, April 1991

  • Gardner, John H.; Bodner, Stephen E.; Dahlburg, Jill P.
  • Physics of Fluids B: Plasma Physics, Vol. 3, Issue 4
  • DOI: 10.1063/1.859835

Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems
journal, March 1992

  • van der Vorst, H. A.
  • SIAM Journal on Scientific and Statistical Computing, Vol. 13, Issue 2
  • DOI: 10.1137/0913035

Effects of thin high-Z layers on the hydrodynamics of laser-accelerated plastic targets
journal, May 2002

  • Obenschain, S. P.; Colombant, D. G.; Karasik, M.
  • Physics of Plasmas, Vol. 9, Issue 5
  • DOI: 10.1063/1.1464541

Laser Compression of Matter to Super-High Densities: Thermonuclear (CTR) Applications
journal, September 1972

  • Nuckolls, John; Wood, Lowell; Thiessen, Albert
  • Nature, Vol. 239, Issue 5368, p. 139-142
  • DOI: 10.1038/239139a0

Ablative stabilization in the incompressible Rayleigh–Taylor instability
journal, January 1986

  • Kull, H. J.; Anisimov, S. I.
  • Physics of Fluids, Vol. 29, Issue 7
  • DOI: 10.1063/1.865593

A Direct Eulerian MUSCL Scheme for Gas Dynamics
journal, January 1985

  • Colella, Phillip
  • SIAM Journal on Scientific and Statistical Computing, Vol. 6, Issue 1
  • DOI: 10.1137/0906009

Self‐consistent model of the Rayleigh–Taylor instability in ablatively accelerated laser plasma
journal, September 1994

  • Bychkov, V. V.; Golberg, S. M.; Liberman, M. A.
  • Physics of Plasmas, Vol. 1, Issue 9
  • DOI: 10.1063/1.870538

Laser‐driven hydrodynamic instability experiments *
journal, July 1993

  • Remington, B. A.; Weber, S. V.; Haan, S. W.
  • Physics of Fluids B: Plasma Physics, Vol. 5, Issue 7
  • DOI: 10.1063/1.860695

Super-transition-arrays: A model for the spectral analysis of hot, dense plasma
journal, September 1989


Growth rate reduction of the Rayleigh–Taylor instability by ablative convection
journal, February 1995

  • Wouchuk, J. G.; Piriz, A. R.
  • Physics of Plasmas, Vol. 2, Issue 2
  • DOI: 10.1063/1.870974

Self‐consistent stability analysis of ablation fronts in inertial confinement fusion
journal, May 1996

  • Betti, R.; Goncharov, V. N.; McCrory, R. L.
  • Physics of Plasmas, Vol. 3, Issue 5
  • DOI: 10.1063/1.871664

Direct-drive inertial confinement fusion: A review
journal, November 2015

  • Craxton, R. S.; Anderson, K. S.; Boehly, T. R.
  • Physics of Plasmas, Vol. 22, Issue 11
  • DOI: 10.1063/1.4934714

Nonlinear effects of multifrequency hydrodynamic instabilities on ablatively accelerated thin shells
journal, January 1982


Comprehensive Diagnosis of Growth Rates of the Ablative Rayleigh-Taylor Instability
journal, January 2007


Modeling fluid instabilities in inertial confinement fusion hydrodynamics codes
journal, May 2005

  • Zalesak, Steven T.; Schmitt, Andrew J.; Velikovich, A. L.
  • Physics of Plasmas, Vol. 12, Issue 5
  • DOI: 10.1063/1.1885004

Transport Phenomena in a Completely Ionized Gas
journal, March 1953


On a Physical Theory of Stellar Spectra
journal, May 1921

  • Saha, M. N.
  • Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 99, Issue 697
  • DOI: 10.1098/rspa.1921.0029

Direct-drive laser fusion: Status and prospects
journal, May 1998

  • Bodner, Stephen E.; Colombant, Denis G.; Gardner, John H.
  • Physics of Plasmas, Vol. 5, Issue 5, p. 1901-1918
  • DOI: 10.1063/1.872861

A stabilized Runge–Kutta–Legendre method for explicit super-time-stepping of parabolic and mixed equations
journal, January 2014

  • Meyer, Chad D.; Balsara, Dinshaw S.; Aslam, Tariq D.
  • Journal of Computational Physics, Vol. 257
  • DOI: 10.1016/j.jcp.2013.08.021

Ablative Rayleigh-Taylor Instability at Short Wavelengths Observed with Moiré Interferometry
journal, March 2002


Systems of conservation laws
journal, May 1960

  • Lax, Peter; Wendroff, Burton
  • Communications on Pure and Applied Mathematics, Vol. 13, Issue 2
  • DOI: 10.1002/cpa.3160130205

Measurement of a Dispersion Curve for Linear-Regime Rayleigh-Taylor Growth Rates in Laser-Driven Planar Targets
journal, April 1997


Theory of the Ablative Richtmyer-Meshkov Instability
journal, March 1999