skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Escape and finite-size scaling in diffusion-controlled annihilation

Abstract

In this paper, we study diffusion-controlled single-species annihilation with a finite number of particles. In this reaction-diffusion process, each particle undergoes ordinary diffusion, and when two particles meet, they annihilate. We focus on spatial dimensions d>2 where a finite number of particles typically survive the annihilation process. Using scaling techniques we investigate the average number of surviving particles, M, as a function of the initial number of particles, N. In three dimensions, for instance, we find the scaling law M ~ N1/3 in the asymptotic regime N»1. We show that two time scales govern the reaction kinetics: the diffusion time scale, T ~ N2/3, and the escape time scale, τ ~ N4/3. The vast majority of annihilation events occur on the diffusion time scale, while no annihilation events occur beyond the escape time scale.

Authors:
ORCiD logo [1];  [2]
  1. Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division and Center for Nonlinear Studies
  2. Boston Univ., MA (United States). Department of Physics
Publication Date:
Research Org.:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE Laboratory Directed Research and Development (LDRD) Program
OSTI Identifier:
1337106
Report Number(s):
LA-UR-16-23613
Journal ID: ISSN 1751-8113
Grant/Contract Number:  
AC52-06NA25396
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Physics. A, Mathematical and Theoretical
Additional Journal Information:
Journal Volume: 49; Journal Issue: 50; Journal ID: ISSN 1751-8113
Publisher:
IOP Publishing
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; Mathematics

Citation Formats

Ben-Naim, Eli, and Krapivsky, Paul L. Escape and finite-size scaling in diffusion-controlled annihilation. United States: N. p., 2016. Web. https://doi.org/10.1088/1751-8113/49/50/504004.
Ben-Naim, Eli, & Krapivsky, Paul L. Escape and finite-size scaling in diffusion-controlled annihilation. United States. https://doi.org/10.1088/1751-8113/49/50/504004
Ben-Naim, Eli, and Krapivsky, Paul L. Fri . "Escape and finite-size scaling in diffusion-controlled annihilation". United States. https://doi.org/10.1088/1751-8113/49/50/504004. https://www.osti.gov/servlets/purl/1337106.
@article{osti_1337106,
title = {Escape and finite-size scaling in diffusion-controlled annihilation},
author = {Ben-Naim, Eli and Krapivsky, Paul L.},
abstractNote = {In this paper, we study diffusion-controlled single-species annihilation with a finite number of particles. In this reaction-diffusion process, each particle undergoes ordinary diffusion, and when two particles meet, they annihilate. We focus on spatial dimensions d>2 where a finite number of particles typically survive the annihilation process. Using scaling techniques we investigate the average number of surviving particles, M, as a function of the initial number of particles, N. In three dimensions, for instance, we find the scaling law M ~ N1/3 in the asymptotic regime N»1. We show that two time scales govern the reaction kinetics: the diffusion time scale, T ~ N2/3, and the escape time scale, τ ~ N4/3. The vast majority of annihilation events occur on the diffusion time scale, while no annihilation events occur beyond the escape time scale.},
doi = {10.1088/1751-8113/49/50/504004},
journal = {Journal of Physics. A, Mathematical and Theoretical},
number = 50,
volume = 49,
place = {United States},
year = {2016},
month = {12}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 3 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Stochastic Problems in Physics and Astronomy
journal, January 1943


Front propagation into unstable states
journal, November 2003


Applications of field-theoretic renormalization group methods to reaction–diffusion problems
journal, April 2005

  • Täuber, Uwe C.; Howard, Martin; Vollmayr-Lee, Benjamin P.
  • Journal of Physics A: Mathematical and General, Vol. 38, Issue 17
  • DOI: 10.1088/0305-4470/38/17/R01

Role of density fluctuations in bimolecular reaction kinetics
journal, February 1978


Asymptotics for interacting particle systems onZ d
journal, June 1980

  • Bramson, Maury; Griffeath, David
  • Zeitschrift f�r Wahrscheinlichkeitstheorie und Verwandte Gebiete, Vol. 53, Issue 2
  • DOI: 10.1007/BF01013315

Kinetics of diffusion‐controlled processes in dense polymer systems. I. Nonentangled regimes
journal, March 1982

  • de Gennes, P. G.
  • The Journal of Chemical Physics, Vol. 76, Issue 6
  • DOI: 10.1063/1.443328

Diffusion-limited reactions in one dimension
journal, May 1983

  • Torney, David C.; McConnell, Harden M.
  • The Journal of Physical Chemistry, Vol. 87, Issue 11
  • DOI: 10.1021/j100234a023

Particle–antiparticle annihilation in diffusive motion
journal, March 1983

  • Toussaint, Doug; Wilczek, Frank
  • The Journal of Chemical Physics, Vol. 78, Issue 5
  • DOI: 10.1063/1.445022

Diffusion-controlled annihilation in the presence of particle sources: Exact results in one dimension
journal, October 1985


Fluctuation-dominated kinetics in diffusion-controlled reactions
journal, July 1985


Exact solutions for a diffusion-reaction process in one dimension
journal, March 1988


Exact solution for a steady-state aggregation model in one dimension
journal, April 1989


Statics and dynamics of a diffusion-limited reaction: Anomalous kinetics, nonequilibrium self-ordering, and a dynamic transition
journal, September 1990

  • ben-Avraham, Daniel; Burschka, Martin A.; Doering, Charles R.
  • Journal of Statistical Physics, Vol. 60, Issue 5-6
  • DOI: 10.1007/BF01025990

Diffusion-limited exciton fusion reaction in one-dimensional tetramethylammonium manganese trichloride (TMMC)
journal, April 1993


One-dimensional diffusion-limited relaxation of photoexcitations in suspensions of single-walled carbon nanotubes
journal, July 2006


Measurement of a Reaction-Diffusion Crossover in Exciton-Exciton Recombination inside Carbon Nanotubes Using Femtosecond Optical Absorption
journal, November 2013


Alternating kinetics of annihilating random walks near a free interface
journal, March 1998

  • Frachebourg, L.; Krapivsky, P. L.; Redner, S.
  • Journal of Physics A: Mathematical and General, Vol. 31, Issue 12
  • DOI: 10.1088/0305-4470/31/12/005

Finite-size scaling studies of one-dimensional reaction-diffusion systems. Part I. Analytical results
journal, March 1995

  • Krebs, Klaus; Pfannmüller, Markus P.; Wehefritz, Birgit
  • Journal of Statistical Physics, Vol. 78, Issue 5-6
  • DOI: 10.1007/BF02180138

Scaling Theory for Finite-Size Effects in the Critical Region
journal, June 1972


Finite-size scaling at first-order phase transitions
journal, August 1984


    Works referencing / citing this record:

    Solution of the spatial neutral model yields new bounds on the Amazonian species richness
    journal, February 2017

    • Shem-Tov, Yahav; Danino, Matan; Shnerb, Nadav M.
    • Scientific Reports, Vol. 7, Issue 1
    • DOI: 10.1038/srep42415