skip to main content


Title: Transverse ac-driven and geometric ratchet effects for vortices in conformal crystal pinning arrays

A conformal pinning array is created by taking a conformal transformation of a uniform hexagonal lattice to create a structure in which the sixfold ordering of the original lattice is preserved but which has a spatial gradient in the pinning site density. With a series of conformal arrays it is possible to create asymmetric substrates, and it was previously shown that when an ac drive is applied parallel to the asymmetry direction, a pronounced ratchet effect occurs with a net dc flow of vortices in the same direction as the ac drive. Here, in this article, we show that when the ac drive is applied perpendicular to the substrate asymmetry direction, it is possible to realize a transverse ratchet effect where a net dc flow of vortices is generated perpendicular to the ac drive. The conformal transverse ratchet effect is distinct from previous versions of transverse ratchets in that it occurs due to the generation of non-Gaussian transverse vortex velocity fluctuations by the plastic motion of vortices, so that the system behaves as a noise correlation ratchet. The transverse ratchet effect is much more pronounced in the conformal arrays than in random gradient arrays and is absent in square gradientmore » arrays due the different nature of the vortex flow in each geometry. We show that a series of reversals can occur in the transverse ratchet effect due to changes in the vortex flow across the pinning gradient as a function of vortex filling, pinning strength, and ac amplitude. We also consider the case where a dc drive applied perpendicular to the substrate asymmetry direction generates a net flow of vortices perpendicular to the dc drive, producing what is known as a geometric or drift ratchet that again arises due to non-Gaussian dynamically generated fluctuations. The drift ratchet is more efficient than the ac driven ratchet and also exhibits a series of reversals for varied parameters. Lastly, our results should be general to a wide class of systems undergoing nonequilibrium dynamics on conformal substrates, such as colloidal particles on optical traps.« less
 [1] ;  [1]
  1. Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division
Publication Date:
Report Number(s):
Journal ID: ISSN 2469-9950
Grant/Contract Number:
Accepted Manuscript
Journal Name:
Physical Review B
Additional Journal Information:
Journal Volume: 93; Journal Issue: 6; Journal ID: ISSN 2469-9950
American Physical Society (APS)
Research Org:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org:
USDOE National Nuclear Security Administration (NNSA)
Country of Publication:
United States
OSTI Identifier:
Alternate Identifier(s):
OSTI ID: 1237784