skip to main content

DOE PAGESDOE PAGES

Title: Five-axis ultrasonic additive manufacturing for nuclear component manufacture

Ultrasonic additive manufacturing (UAM) is a three-dimensional metal printing technology which uses high-frequency vibrations to scrub and weld together both similar and dissimilar metal foils. There is no melting in the process and no special atmosphere requirements are needed. Consequently, dissimilar metals can be joined with little to no intermetallic compound formation, and large components can be manufactured. These attributes have the potential to transform manufacturing of nuclear reactor core components such as control elements for the High Flux Isotope Reactor at Oak Ridge National Laboratory. These components are hybrid structures consisting of an outer cladding layer in contact with the coolant with neutron-absorbing materials inside, such as neutron poisons for reactor control purposes. UAM systems are built into a computer numerical control (CNC) framework to utilize intermittent subtractive processes. These subtractive processes are used to introduce internal features as the component is being built and for net shaping. The CNC framework is also used for controlling the motion of the welding operation. Lastly, it is demonstrated here that curved components with embedded features can be produced using a five-axis code for the welder for the first time.
Authors:
ORCiD logo [1] ;  [1] ;  [2] ;  [3] ;  [1]
  1. Fabrisonic, LLC, Columbus, OH (United States)
  2. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  3. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Univ. of Tennessee, Knoxville, TN (United States)
Publication Date:
Grant/Contract Number:
AC05-00OR22725
Type:
Accepted Manuscript
Journal Name:
JOM. Journal of the Minerals, Metals & Materials Society
Additional Journal Information:
Journal Name: JOM. Journal of the Minerals, Metals & Materials Society; Journal ID: ISSN 1047-4838
Publisher:
Springer
Research Org:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). High Flux Isotope Reactor (HFIR)
Sponsoring Org:
USDOE Laboratory Directed Research and Development (LDRD) Program
Country of Publication:
United States
Language:
English
Subject:
21 SPECIFIC NUCLEAR REACTORS AND ASSOCIATED PLANTS
OSTI Identifier:
1337038