skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The Ebola Virus VP30-NP Interaction Is a Regulator of Viral RNA Synthesis

Abstract

Filoviruses are capable of causing deadly hemorrhagic fevers. All nonsegmented negative-sense RNA-virus nucleocapsids are composed of a nucleoprotein (NP), a phosphoprotein (VP35) and a polymerase (L). However, the VP30 RNA-synthesis co-factor is unique to the filoviruses. The assembly, structure, and function of the filovirus RNA replication complex remain unclear. Here, we have characterized the interactions of Ebola, Sudan and Marburg virus VP30 with NP using in vitro biochemistry, structural biology and cell-based mini-replicon assays. We have found that the VP30 C-terminal domain interacts with a short peptide in the C-terminal region of NP. Further, we have solved crystal structures of the VP30-NP complex for both Ebola and Marburg viruses. These structures reveal that a conserved, proline-rich NP peptide binds a shallow hydrophobic cleft on the VP30 C-terminal domain. Structure-guided Ebola virus VP30 mutants have altered affinities for the NP peptide. Correlation of these VP30-NP affinities with the activity for each of these mutants in a cell-based mini-replicon assay suggests that the VP30-NP interaction plays both essential and inhibitory roles in Ebola virus RNA synthesis.

Authors:
; ; ; ;
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22). Scientific User Facilities Division; National Institutes of Health (NIH); National Cancer Inst.; National Inst. of General Medical Sciences
OSTI Identifier:
1336893
Alternate Identifier(s):
OSTI ID: 1351391
Grant/Contract Number:  
AC02-06CH11357; 1R01AI118016; ACB-12002; AGM-12006
Resource Type:
Published Article
Journal Name:
PLoS Pathogens
Additional Journal Information:
Journal Name: PLoS Pathogens Journal Volume: 12 Journal Issue: 10; Journal ID: ISSN 1553-7374
Publisher:
Public Library of Science
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; RNA synthesis; Crystal structure; Luciferase; Co-immunoprecipitation; Ebola virus; Negative-sense RNA viruses; Nucleocapsids; Filoviruses

Citation Formats

Kirchdoerfer, Robert N., Moyer, Crystal L., Abelson, Dafna M., Saphire, Erica Ollmann, and Schnell, ed., Matthias Johannes. The Ebola Virus VP30-NP Interaction Is a Regulator of Viral RNA Synthesis. United States: N. p., 2016. Web. doi:10.1371/journal.ppat.1005937.
Kirchdoerfer, Robert N., Moyer, Crystal L., Abelson, Dafna M., Saphire, Erica Ollmann, & Schnell, ed., Matthias Johannes. The Ebola Virus VP30-NP Interaction Is a Regulator of Viral RNA Synthesis. United States. doi:10.1371/journal.ppat.1005937.
Kirchdoerfer, Robert N., Moyer, Crystal L., Abelson, Dafna M., Saphire, Erica Ollmann, and Schnell, ed., Matthias Johannes. Tue . "The Ebola Virus VP30-NP Interaction Is a Regulator of Viral RNA Synthesis". United States. doi:10.1371/journal.ppat.1005937.
@article{osti_1336893,
title = {The Ebola Virus VP30-NP Interaction Is a Regulator of Viral RNA Synthesis},
author = {Kirchdoerfer, Robert N. and Moyer, Crystal L. and Abelson, Dafna M. and Saphire, Erica Ollmann and Schnell, ed., Matthias Johannes},
abstractNote = {Filoviruses are capable of causing deadly hemorrhagic fevers. All nonsegmented negative-sense RNA-virus nucleocapsids are composed of a nucleoprotein (NP), a phosphoprotein (VP35) and a polymerase (L). However, the VP30 RNA-synthesis co-factor is unique to the filoviruses. The assembly, structure, and function of the filovirus RNA replication complex remain unclear. Here, we have characterized the interactions of Ebola, Sudan and Marburg virus VP30 with NP using in vitro biochemistry, structural biology and cell-based mini-replicon assays. We have found that the VP30 C-terminal domain interacts with a short peptide in the C-terminal region of NP. Further, we have solved crystal structures of the VP30-NP complex for both Ebola and Marburg viruses. These structures reveal that a conserved, proline-rich NP peptide binds a shallow hydrophobic cleft on the VP30 C-terminal domain. Structure-guided Ebola virus VP30 mutants have altered affinities for the NP peptide. Correlation of these VP30-NP affinities with the activity for each of these mutants in a cell-based mini-replicon assay suggests that the VP30-NP interaction plays both essential and inhibitory roles in Ebola virus RNA synthesis.},
doi = {10.1371/journal.ppat.1005937},
journal = {PLoS Pathogens},
number = 10,
volume = 12,
place = {United States},
year = {2016},
month = {10}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
DOI: 10.1371/journal.ppat.1005937

Citation Metrics:
Cited by: 6 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

The spatio-temporal distribution dynamics of Ebola virus proteins and RNA in infected cells
journal, February 2013

  • Nanbo, Asuka; Watanabe, Shinji; Halfmann, Peter
  • Scientific Reports, Vol. 3, Issue 1
  • DOI: 10.1038/srep01206

Ebola Virus Transcription Activator VP30 Is a Zinc-Binding Protein
journal, March 2003


Hydrophobic effect in protein folding and other noncovalent processes involving proteins.
journal, November 1989

  • Spolar, R. S.; Ha, J. H.; Record, M. T.
  • Proceedings of the National Academy of Sciences, Vol. 86, Issue 21
  • DOI: 10.1073/pnas.86.21.8382

Assembly of the Ebola Virus Nucleoprotein from a Chaperoned VP35 Complex
journal, July 2015


Coupling of local folding to site-specific binding of proteins to DNA
journal, February 1994


Features and development of Coot
journal, March 2010

  • Emsley, P.; Lohkamp, B.; Scott, W. G.
  • Acta Crystallographica Section D Biological Crystallography, Vol. 66, Issue 4
  • DOI: 10.1107/S0907444910007493

Structure of Nipah virus unassembled nucleoprotein in complex with its viral chaperone
journal, August 2014

  • Yabukarski, Filip; Lawrence, Philip; Tarbouriech, Nicolas
  • Nature Structural & Molecular Biology, Vol. 21, Issue 9
  • DOI: 10.1038/nsmb.2868

REFMAC 5 for the refinement of macromolecular crystal structures
journal, March 2011

  • Murshudov, Garib N.; Skubák, Pavol; Lebedev, Andrey A.
  • Acta Crystallographica Section D Biological Crystallography, Vol. 67, Issue 4
  • DOI: 10.1107/S0907444911001314

Minigenome-Based Reporter System Suitable for High-Throughput Screening of Compounds Able To Inhibit Ebolavirus Replication and/or Transcription
journal, April 2010

  • Jasenosky, L. D.; Neumann, G.; Kawaoka, Y.
  • Antimicrobial Agents and Chemotherapy, Vol. 54, Issue 7
  • DOI: 10.1128/AAC.00138-10

An Intrinsically Disordered Peptide from Ebola Virus VP35 Controls Viral RNA Synthesis by Modulating Nucleoprotein-RNA Interactions
journal, April 2015


Phosphorylation of Ebola Virus VP30 Influences the Composition of the Viral Nucleocapsid Complex: IMPACT ON VIRAL TRANSCRIPTION AND REPLICATION
journal, March 2013

  • Biedenkopf, Nadine; Hartlieb, Bettina; Hoenen, Thomas
  • Journal of Biological Chemistry, Vol. 288, Issue 16
  • DOI: 10.1074/jbc.M113.461285

Ebola Virus VP30 Is an RNA Binding Protein
journal, June 2007

  • John, S. P.; Wang, T.; Steffen, S.
  • Journal of Virology, Vol. 81, Issue 17
  • DOI: 10.1128/JVI.02523-06

PHENIX: a comprehensive Python-based system for macromolecular structure solution
journal, January 2010

  • Adams, Paul D.; Afonine, Pavel V.; Bunkóczi, Gábor
  • Acta Crystallographica Section D Biological Crystallography, Vol. 66, Issue 2, p. 213-221
  • DOI: 10.1107/S0907444909052925

Structure of the vesicular stomatitis virus nucleocapsid in complex with the nucleocapsid-binding domain of the small polymerase cofactor, P
journal, July 2009

  • Green, Todd J.; Luo, Ming
  • Proceedings of the National Academy of Sciences, Vol. 106, Issue 28
  • DOI: 10.1073/pnas.0903228106

The Ebola virus ribonucleoprotein complex: A novel VP30–L interaction identified
journal, March 2009


Fast, scalable generation of high‐quality protein multiple sequence alignments using Clustal Omega
journal, January 2011

  • Sievers, Fabian; Wilm, Andreas; Dineen, David
  • Molecular Systems Biology, Vol. 7, Issue 1
  • DOI: 10.1038/msb.2011.75

Functional Mapping of the Nucleoprotein of Ebola Virus
journal, March 2006


Ebola Virus VP30-Mediated Transcription Is Regulated by RNA Secondary Structure Formation
journal, September 2002


Phosphorylation of Marburg Virus VP30 at Serines 40 and 42 Is Critical for Its Interaction with NP Inclusions
journal, August 2001

  • Modrof, Jens; Möritz, Constanze; Kolesnikova, Larissa
  • Virology, Vol. 287, Issue 1
  • DOI: 10.1006/viro.2001.1027

Role of VP30 Phosphorylation in the Ebola Virus Replication Cycle
journal, November 2011

  • Martinez, Miguel J.; Volchkova, Valentina A.; Raoul, Hervé
  • The Journal of Infectious Diseases, Vol. 204, Issue suppl_3
  • DOI: 10.1093/infdis/jir320

DISOPRED3: precise disordered region predictions with annotated protein-binding activity
journal, November 2014


Descriptive analysis of Ebola virus proteins
journal, November 1985


Characterization of the Ebola virus nucleoprotein-RNA complex
journal, February 2010

  • Noda, T.; Hagiwara, K.; Sagara, H.
  • Journal of General Virology, Vol. 91, Issue 6
  • DOI: 10.1099/vir.0.019794-0

Inclusion Bodies Are a Site of Ebolavirus Replication
journal, August 2012

  • Hoenen, T.; Shabman, R. S.; Groseth, A.
  • Journal of Virology, Vol. 86, Issue 21
  • DOI: 10.1128/JVI.01525-12

Structure of the Reston ebolavirus VP30 C-terminal domain
journal, March 2014

  • Clifton, Matthew C.; Kirchdoerfer, Robert N.; Atkins, Kateri
  • Acta Crystallographica Section F Structural Biology Communications, Vol. 70, Issue 4, p. 457-460
  • DOI: 10.1107/S2053230X14003811

Interactions of Marburg Virus Nucleocapsid Proteins
journal, September 1998


Scaling and assessment of data quality
journal, December 2005

  • Evans, Philip
  • Acta Crystallographica Section D Biological Crystallography, Vol. 62, Issue 1, p. 72-82
  • DOI: 10.1107/S0907444905036693

Role of Ebola Virus VP30 in Transcription Reinitiation
journal, October 2008

  • Martinez, M. J.; Biedenkopf, N.; Volchkova, V.
  • Journal of Virology, Vol. 82, Issue 24
  • DOI: 10.1128/JVI.01395-08

XDS
journal, January 2010

  • Kabsch, Wolfgang
  • Acta Crystallographica Section D Biological Crystallography, Vol. 66, Issue 2
  • DOI: 10.1107/S0907444909047337

Inference of Macromolecular Assemblies from Crystalline State
journal, September 2007


The structure of the C-terminal domain of the Zaire ebolavirus nucleoprotein
journal, August 2014

  • Dziubańska, Paulina J.; Derewenda, Urszula; Ellena, Jeffrey F.
  • Acta Crystallographica Section D Biological Crystallography, Vol. 70, Issue 9
  • DOI: 10.1107/S1399004714014710

Crystal structure of the C-terminal domain of Ebola virus VP30 reveals a role in transcription and nucleocapsid association
journal, January 2007

  • Hartlieb, B.; Muziol, T.; Weissenhorn, W.
  • Proceedings of the National Academy of Sciences, Vol. 104, Issue 2
  • DOI: 10.1073/pnas.0606730104

Structural studies on the authentic mumps virus nucleocapsid showing uncoiling by the phosphoprotein
journal, October 2014

  • Cox, Robert; Pickar, Adrian; Qiu, Shihong
  • Proceedings of the National Academy of Sciences, Vol. 111, Issue 42
  • DOI: 10.1073/pnas.1413268111

Phaser crystallographic software
journal, July 2007

  • McCoy, Airlie J.; Grosse-Kunstleve, Ralf W.; Adams, Paul D.
  • Journal of Applied Crystallography, Vol. 40, Issue 4
  • DOI: 10.1107/S0021889807021206

Homo-oligomerization facilitates the interferon-antagonist activity of the ebolavirus VP35 protein
journal, October 2005


    Works referencing / citing this record:

    Host factor SMYD3 is recruited by Ebola virus nucleoprotein to facilitate viral mRNA transcription
    journal, January 2019


    Unveiling a Drift Resistant Cryptotope within Marburgvirus Nucleoprotein Recognized by Llama Single-Domain Antibodies
    journal, October 2017

    • Garza, John Anthony; Taylor, Alexander Bryan; Sherwood, Laura Jo
    • Frontiers in Immunology, Vol. 8
    • DOI: 10.3389/fimmu.2017.01234