skip to main content

DOE PAGESDOE PAGES

Title: Stability of peatland carbon to rising temperatures

Peatlands contain one-third of soil carbon (C), mostly buried in deep, saturated anoxic zones (catotelm). The response of catotelm C to climate forcing is uncertain, because prior experiments have focused on surface warming. Here, we show that deep peat heating of a 2 m-thick peat column results in an exponential increase in CH 4 emissions. But, this response is due solely to surface processes and not degradation of catotelm peat. Incubations show that only the top 20–30 cm of peat from experimental plots have higher CH 4 production rates at elevated temperatures. Radiocarbon analyses demonstrate that CH 4 and CO 2 are produced primarily from decomposition of surface-derived modern photosynthate, not catotelm C. Furthermore, there are no differences in microbial abundances, dissolved organic matter concentrations or degradative enzyme activities among treatments. Our results suggest that although surface peat will respond to increasing temperature, the large reservoir of catotelm C is stable under current anoxic conditions.
Authors:
 [1] ;  [2] ;  [3] ;  [4] ;  [5] ;  [2] ;  [6] ;  [7] ;  [8] ;  [8] ;  [4] ;  [5] ;  [6] ;  [7] ;  [5] ;  [1] ;  [2] ;  [5]
  1. Florida State Univ., Tallahassee, FL (United States). Earth, Ocean and Atmospheric Sciences
  2. Univ. of Oregon, Eugene, OR (United States). Inst. of Ecology and Evolution
  3. Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab.
  4. USDA Forest Service Northern Research Station, Grand Rapids, MN (United States)
  5. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  6. Chapman Univ., Orange, CA (United States). Schmid College of Science and Technology
  7. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  8. Georgia Inst. of Technology, Atlanta, GA (United States). School of Biological Sciences and School of Earth and Atmospheric Sciences
Publication Date:
Report Number(s):
PNNL-SA-118747
Journal ID: ISSN 2041-1723; KP1702010; ERKP788
Grant/Contract Number:
AC05-00OR22725; AC05-76RL01830
Type:
Accepted Manuscript
Journal Name:
Nature Communications
Additional Journal Information:
Journal Volume: 7; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Research Org:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Org:
USDOE Office of Science (SC)
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES; Environmental Molecular Sciences Laboratory; carbon cycle
OSTI Identifier:
1336572
Alternate Identifier(s):
OSTI ID: 1339878

Wilson, R. M., Hopple, A. M., Tfaily, M. M., Sebestyen, S. D., Schadt, C. W., Pfeifer-Meister, L., Medvedeff, C., McFarlane, K. J., Kostka, J. E., Kolton, M., Kolka, R. K., Kluber, L. A., Keller, J. K., Guilderson, T. P., Griffiths, N. A., Chanton, J. P., Bridgham, S. D., and Hanson, P. J.. Stability of peatland carbon to rising temperatures. United States: N. p., Web. doi:10.1038/ncomms13723.
Wilson, R. M., Hopple, A. M., Tfaily, M. M., Sebestyen, S. D., Schadt, C. W., Pfeifer-Meister, L., Medvedeff, C., McFarlane, K. J., Kostka, J. E., Kolton, M., Kolka, R. K., Kluber, L. A., Keller, J. K., Guilderson, T. P., Griffiths, N. A., Chanton, J. P., Bridgham, S. D., & Hanson, P. J.. Stability of peatland carbon to rising temperatures. United States. doi:10.1038/ncomms13723.
Wilson, R. M., Hopple, A. M., Tfaily, M. M., Sebestyen, S. D., Schadt, C. W., Pfeifer-Meister, L., Medvedeff, C., McFarlane, K. J., Kostka, J. E., Kolton, M., Kolka, R. K., Kluber, L. A., Keller, J. K., Guilderson, T. P., Griffiths, N. A., Chanton, J. P., Bridgham, S. D., and Hanson, P. J.. 2016. "Stability of peatland carbon to rising temperatures". United States. doi:10.1038/ncomms13723. https://www.osti.gov/servlets/purl/1336572.
@article{osti_1336572,
title = {Stability of peatland carbon to rising temperatures},
author = {Wilson, R. M. and Hopple, A. M. and Tfaily, M. M. and Sebestyen, S. D. and Schadt, C. W. and Pfeifer-Meister, L. and Medvedeff, C. and McFarlane, K. J. and Kostka, J. E. and Kolton, M. and Kolka, R. K. and Kluber, L. A. and Keller, J. K. and Guilderson, T. P. and Griffiths, N. A. and Chanton, J. P. and Bridgham, S. D. and Hanson, P. J.},
abstractNote = {Peatlands contain one-third of soil carbon (C), mostly buried in deep, saturated anoxic zones (catotelm). The response of catotelm C to climate forcing is uncertain, because prior experiments have focused on surface warming. Here, we show that deep peat heating of a 2 m-thick peat column results in an exponential increase in CH4 emissions. But, this response is due solely to surface processes and not degradation of catotelm peat. Incubations show that only the top 20–30 cm of peat from experimental plots have higher CH4 production rates at elevated temperatures. Radiocarbon analyses demonstrate that CH4 and CO2 are produced primarily from decomposition of surface-derived modern photosynthate, not catotelm C. Furthermore, there are no differences in microbial abundances, dissolved organic matter concentrations or degradative enzyme activities among treatments. Our results suggest that although surface peat will respond to increasing temperature, the large reservoir of catotelm C is stable under current anoxic conditions.},
doi = {10.1038/ncomms13723},
journal = {Nature Communications},
number = ,
volume = 7,
place = {United States},
year = {2016},
month = {12}
}

Works referenced in this record:

Introducing mothur: Open-Source, Platform-Independent, Community-Supported Software for Describing and Comparing Microbial Communities
journal, October 2009
  • Schloss, P. D.; Westcott, S. L.; Ryabin, T.
  • Applied and Environmental Microbiology, Vol. 75, Issue 23, p. 7537-7541
  • DOI: 10.1128/AEM.01541-09