DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Metal–metal chalcogenide molecular precursors to binary, ternary, and quaternary metal chalcogenide thin films for electronic devices

Abstract

We found that bulk metals and metal chalcogenides dissolve in primary amine–dithiol solvent mixtures at ambient conditions. Thin-films of CuS, SnS, ZnS, Cu2Sn(Sx,Se1-x)3, and Cu2ZnSn(SxSe1-x)4 (0 ≤ x ≤ 1) were deposited using the as-dissolved solutions. Furthermore, Cu2ZnSn(SxSe1-x)4 solar cells with efficiencies of 6.84% and 7.02% under AM1.5 illumination were fabricated from two example solution precursors, respectively.

Authors:
 [1];  [2];  [1];  [1];  [3];  [1];  [2]
  1. Purdue Univ., West Lafayette, IN (United States). School of Materials Engineering
  2. Purdue Univ., West Lafayette, IN (United States). School of Chemical Engineering
  3. Brookhaven National Lab. (BNL), Upton, NY (United States). Center for Functional Nanomaterials
Publication Date:
Research Org.:
Brookhaven National Lab. (BNL), Upton, NY (United States). Center for Functional Nanomaterials (CFN)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1336124
Report Number(s):
BNL-112586-2016-JA
Journal ID: ISSN 1359-7345; CHCOFS; KC0403020
Grant/Contract Number:  
SC00112704
Resource Type:
Accepted Manuscript
Journal Name:
ChemComm
Additional Journal Information:
Journal Volume: 52; Journal Issue: 28; Journal ID: ISSN 1359-7345
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
English
Subject:
77 NANOSCIENCE AND NANOTECHNOLOGY; photovoltaics; solar cells; crystal growth; Center for Functional Nanomaterials

Citation Formats

Zhang, Ruihong, Cho, Seonghyuk, Lim, Daw Gen, Hu, Xianyi, Stach, Eric A., Handwerker, Carol A., and Agrawal, Rakesh. Metal–metal chalcogenide molecular precursors to binary, ternary, and quaternary metal chalcogenide thin films for electronic devices. United States: N. p., 2016. Web. doi:10.1039/c5cc09915c.
Zhang, Ruihong, Cho, Seonghyuk, Lim, Daw Gen, Hu, Xianyi, Stach, Eric A., Handwerker, Carol A., & Agrawal, Rakesh. Metal–metal chalcogenide molecular precursors to binary, ternary, and quaternary metal chalcogenide thin films for electronic devices. United States. https://doi.org/10.1039/c5cc09915c
Zhang, Ruihong, Cho, Seonghyuk, Lim, Daw Gen, Hu, Xianyi, Stach, Eric A., Handwerker, Carol A., and Agrawal, Rakesh. Tue . "Metal–metal chalcogenide molecular precursors to binary, ternary, and quaternary metal chalcogenide thin films for electronic devices". United States. https://doi.org/10.1039/c5cc09915c. https://www.osti.gov/servlets/purl/1336124.
@article{osti_1336124,
title = {Metal–metal chalcogenide molecular precursors to binary, ternary, and quaternary metal chalcogenide thin films for electronic devices},
author = {Zhang, Ruihong and Cho, Seonghyuk and Lim, Daw Gen and Hu, Xianyi and Stach, Eric A. and Handwerker, Carol A. and Agrawal, Rakesh},
abstractNote = {We found that bulk metals and metal chalcogenides dissolve in primary amine–dithiol solvent mixtures at ambient conditions. Thin-films of CuS, SnS, ZnS, Cu2Sn(Sx,Se1-x)3, and Cu2ZnSn(SxSe1-x)4 (0 ≤ x ≤ 1) were deposited using the as-dissolved solutions. Furthermore, Cu2ZnSn(SxSe1-x)4 solar cells with efficiencies of 6.84% and 7.02% under AM1.5 illumination were fabricated from two example solution precursors, respectively.},
doi = {10.1039/c5cc09915c},
journal = {ChemComm},
number = 28,
volume = 52,
place = {United States},
year = {Tue Mar 15 00:00:00 EDT 2016},
month = {Tue Mar 15 00:00:00 EDT 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 41 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Facile dissolution of selenium and tellurium in a thiol–amine solvent mixture under ambient conditions
journal, January 2014

  • Webber, David H.; Buckley, Jannise J.; Antunez, Priscilla D.
  • Chemical Science, Vol. 5, Issue 6
  • DOI: 10.1039/c4sc00749b

Cosolvent Approach for Solution-Processable Electronic Thin Films
journal, February 2015


Assessment of the thermoelectric performance of polycrystalline p-type SnSe
journal, May 2014

  • Sassi, S.; Candolfi, C.; Vaney, J.-B.
  • Applied Physics Letters, Vol. 104, Issue 21, Article No. 212105
  • DOI: 10.1063/1.4880817

Solution-processed Cu(In,Ga)(S,Se) 2 absorber yielding a 15.2% efficient solar cell : Solution-processed CIGS absorber
journal, January 2012

  • Todorov, Teodor K.; Gunawan, Oki; Gokmen, Tayfun
  • Progress in Photovoltaics: Research and Applications, Vol. 21, Issue 1
  • DOI: 10.1002/pip.1253

Fabrication of 7.2% Efficient CZTSSe Solar Cells Using CZTS Nanocrystals
journal, December 2010

  • Guo, Qijie; Ford, Grayson M.; Yang, Wei-Chang
  • Journal of the American Chemical Society, Vol. 132, Issue 49
  • DOI: 10.1021/ja108427b

Photovoltaic properties of SnS based solar cells
journal, November 2006

  • Ramakrishna Reddy, K. T.; Koteswara Reddy, N.; Miles, R. W.
  • Solar Energy Materials and Solar Cells, Vol. 90, Issue 18-19, p. 3041-3046
  • DOI: 10.1016/j.solmat.2006.06.012

High-Efficient Deep-Blue Light-Emitting Diodes by Using High Quality Zn x Cd 1- x S/ZnS Core/Shell Quantum Dots
journal, December 2013

  • Shen, Huaibin; Bai, Xianwei; Wang, Aqiang
  • Advanced Functional Materials, Vol. 24, Issue 16
  • DOI: 10.1002/adfm.201302964

Solution-processed core–shell nanowires for efficient photovoltaic cells
journal, August 2011

  • Tang, Jinyao; Huo, Ziyang; Brittman, Sarah
  • Nature Nanotechnology, Vol. 6, Issue 9
  • DOI: 10.1038/nnano.2011.139

A High-Efficiency Solution-Deposited Thin-Film Photovoltaic Device
journal, October 2008


A Versatile Solution Route to Efficient Cu 2 ZnSn(S,Se) 4 Thin-Film Solar Cells
journal, March 2015

  • Zhang, Ruihong; Szczepaniak, Stephen M.; Carter, Nathaniel J.
  • Chemistry of Materials, Vol. 27, Issue 6
  • DOI: 10.1021/cm504654t

Solution-Based Synthesis and Characterization of Cu 2 ZnSnS 4 Nanocrystals
journal, September 2009

  • Riha, Shannon C.; Parkinson, Bruce A.; Prieto, Amy L.
  • Journal of the American Chemical Society, Vol. 131, Issue 34
  • DOI: 10.1021/ja9044168

9.0% efficient Cu 2 ZnSn(S,Se) 4 solar cells from selenized nanoparticle inks : 9.2% efficient Cu
journal, February 2014

  • Miskin, Caleb K.; Yang, Wei-Chang; Hages, Charles J.
  • Progress in Photovoltaics: Research and Applications, Vol. 23, Issue 5
  • DOI: 10.1002/pip.2472

High-Efficiency Solar Cell with Earth-Abundant Liquid-Processed Absorber
journal, May 2010

  • Todorov, Teodor K.; Reuter, Kathleen B.; Mitzi, David B.
  • Advanced Materials, Vol. 22, Issue 20, p. E156-E159
  • DOI: 10.1002/adma.200904155

Compositionally Tunable Cu 2 ZnSn(S 1– x Se x ) 4 Nanocrystals: Probing the Effect of Se-Inclusion in Mixed Chalcogenide Thin Films
journal, October 2011

  • Riha, Shannon C.; Parkinson, B. A.; Prieto, Amy L.
  • Journal of the American Chemical Society, Vol. 133, Issue 39
  • DOI: 10.1021/ja2058692

Enhancing the efficiency of SnS solar cells via band-offset engineering with a zinc oxysulfide buffer layer
journal, February 2013

  • Sinsermsuksakul, Prasert; Hartman, Katy; Bok Kim, Sang
  • Applied Physics Letters, Vol. 102, Issue 5
  • DOI: 10.1063/1.4789855

Low Temperature Solution-Phase Deposition of SnS Thin Films
journal, September 2014

  • Antunez, Priscilla D.; Torelli, Daniel A.; Yang, Fan
  • Chemistry of Materials, Vol. 26, Issue 19
  • DOI: 10.1021/cm503124u

ZnO−ZnS Heterojunction and ZnS Nanowire Arrays for Electricity Generation
journal, January 2009

  • Lu, Ming-Yen; Song, Jinhui; Lu, Ming-Pei
  • ACS Nano, Vol. 3, Issue 2
  • DOI: 10.1021/nn800804r

Synthesis of Cu 2 ZnSnS 4 Nanocrystals for Use in Low-Cost Photovoltaics
journal, September 2009

  • Steinhagen, Chet; Panthani, Matthew G.; Akhavan, Vahid
  • Journal of the American Chemical Society, Vol. 131, Issue 35
  • DOI: 10.1021/ja905922j

Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals
journal, April 2014

  • Zhao, Li-Dong; Lo, Shih-Han; Zhang, Yongsheng
  • Nature, Vol. 508, Issue 7496, p. 373-377
  • DOI: 10.1038/nature13184

Copper ion liquid-like thermoelectrics
journal, March 2012

  • Liu, Huili; Shi, Xun; Xu, Fangfang
  • Nature Materials, Vol. 11, Issue 5, p. 422-425
  • DOI: 10.1038/nmat3273

Solution Processing of Chalcogenide Semiconductors via Dimensional Reduction
journal, August 2009


Beyond 11% Efficiency: Characteristics of State-of-the-Art Cu 2 ZnSn(S,Se) 4 Solar Cells
journal, August 2012

  • Todorov, Teodor K.; Tang, Jiang; Bag, Santanu
  • Advanced Energy Materials, Vol. 3, Issue 1
  • DOI: 10.1002/aenm.201200348

Full piezoelectric tensors of wurtzite and zinc blende ZnO and ZnS by first-principles calculations
journal, November 2003


Synthesis and structural systematics of ethane-1,2-dithiolato complexes
journal, February 1986

  • Rao, C. Pulla; Dorfman, J. R.; Holm, R. H.
  • Inorganic Chemistry, Vol. 25, Issue 4
  • DOI: 10.1021/ic00224a011

Alkahest for V 2 VI 3 Chalcogenides: Dissolution of Nine Bulk Semiconductors in a Diamine-Dithiol Solvent Mixture
journal, October 2013

  • Webber, David H.; Brutchey, Richard L.
  • Journal of the American Chemical Society, Vol. 135, Issue 42
  • DOI: 10.1021/ja4084336

Highly Efficient Cadmium-Free Quantum Dot Light-Emitting Diodes Enabled by the Direct Formation of Excitons within InP@ZnSeS Quantum Dots
journal, September 2013

  • Lim, Jaehoon; Park, Myeongjin; Bae, Wan Ki
  • ACS Nano, Vol. 7, Issue 10
  • DOI: 10.1021/nn403594j

Solution-processed inorganic semiconductors
journal, January 2004

  • Mitzi, David B.
  • Journal of Materials Chemistry, Vol. 14, Issue 15
  • DOI: 10.1039/b403482a

Electrical properties of Cu2−xSe thin films and their application for solar cells
journal, August 1980


The design and fabrication of thin-film CdS/Cu 2 S cells of 9.15-percent conversion efficiency
journal, April 1980

  • Bragagnolo, J. A.; Barnett, A. M.; Phillips, J. E.
  • IEEE Transactions on Electron Devices, Vol. 27, Issue 4
  • DOI: 10.1109/T-ED.1980.19917

High-Efficiency Devices With Pure Solution-Processed Cu$_{\bf 2}$ ZnSn(S,Se)$_{\bf 4}$ Absorbers
journal, January 2014


Infrared and Raman spectra of the IV-VI compounds SnS and SnSe
journal, February 1977


Vegard’s law
journal, March 1991


Works referencing / citing this record:

Solution processing of chalcogenide materials using thiol–amine “alkahest” solvent systems
journal, January 2017

  • McCarthy, Carrie L.; Brutchey, Richard L.
  • Chemical Communications, Vol. 53, Issue 36
  • DOI: 10.1039/c7cc02226c

Green Atmospheric Aqueous Solution Deposition for High Performance Cu 2 ZnSn(S,Se) 4 Thin Film Solar Cells
journal, October 2018


A direct solution deposition approach to CdTe thin films
journal, January 2016

  • Miskin, Caleb K.; Dubois-Camacho, Angela; Reese, Matthew O.
  • Journal of Materials Chemistry C, Vol. 4, Issue 39
  • DOI: 10.1039/c6tc02986h

Tin Diselenide Molecular Precursor for Solution-Processable Thermoelectric Materials
journal, November 2018


Tin(IV) Methylselenolate as a Low Temperature SnSe Precursor and Conductive “Glue” Between Colloidal Nanocrystals
journal, January 2020


Tin Diselenide Molecular Precursor for Solution-Processable Thermoelectric Materials
journal, November 2018

  • Zhang, Yu; Liu, Yu; Lim, Khak Ho
  • Angewandte Chemie International Edition, Vol. 57, Issue 52
  • DOI: 10.1002/anie.201809847