skip to main content

DOE PAGESDOE PAGES

Title: Enhancing performance of PEM fuel cells: Using the Au nanoplatelet/Nafion interface to enable CO oxidation under ambient conditions

We developed a method for fabrication of Au nanoparticle platelets which can be coated onto the Nafion membranes of polymer electrolyte membrane (PEM) fuel cells simply by Langmuir–Blodgett (LB) trough lift off from the air water interface. By incorporating the coated membranes into fuel cells with one membrane electrode assembly (MEA) we enhanced the maximum power output by more than 50% when operated under ambient conditions. An enhancement of more than 200% was observed when 0.1% CO was incorporated into the H 2 input gas stream and minimal enhancement was observed when the PEM fuel cell was operated with 100% O 2 gas at the cathode, or when particles were deposited on the electrodes. Density function theory (DFT) calculations were carried out to understand the origin of improved output power. Au NPs with 3-atomic layer in height and 2 nm in size were constructed to model the experimentally synthesized Au NPs. Our results indicated that the Au NPs interacted synergistically with the SO 3 groups, attached at end of Nafion side chains, to reduce the energy barrier for the oxidation of CO occurring at the perimeter of the Au NPs, from 1.292 eV to 0.518 eV, enabling the reaction tomore » occur at T<300 K.« less
Authors:
 [1] ;  [1] ;  [1] ;  [2] ;  [3] ;  [1]
  1. State Univ. of New York (SUNY), Stony Brook, NY (United States). Dept. of Materials Science and Engineering
  2. Brookhaven National Lab. (BNL), Upton, NY (United States). Dept. of Chemistry
  3. Brookhaven National Lab. (BNL), Upton, NY (United States). Dept. of Condensed Matter Physics and Materials Science
Publication Date:
Report Number(s):
BNL-112555-2016-JA
Journal ID: ISSN 0021-9517; R&D Project: CO009; KC0302010
Grant/Contract Number:
SC00112704
Type:
Accepted Manuscript
Journal Name:
Journal of Catalysis
Additional Journal Information:
Journal Volume: 339; Journal Issue: C; Journal ID: ISSN 0021-9517
Publisher:
Elsevier
Research Org:
Brookhaven National Laboratory (BNL), Upton, NY (United States)
Sponsoring Org:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; PEM fuel cell; Gold nanoplatelets; CO oxidation
OSTI Identifier:
1336109
Alternate Identifier(s):
OSTI ID: 1341149

Li, Hongfei, Pan, Cheng, Zhao, Sijia, Liu, Ping, Zhu, Yimei, and Rafailovich, Miriam H. Enhancing performance of PEM fuel cells: Using the Au nanoplatelet/Nafion interface to enable CO oxidation under ambient conditions. United States: N. p., Web. doi:10.1016/j.jcat.2016.03.031.
Li, Hongfei, Pan, Cheng, Zhao, Sijia, Liu, Ping, Zhu, Yimei, & Rafailovich, Miriam H. Enhancing performance of PEM fuel cells: Using the Au nanoplatelet/Nafion interface to enable CO oxidation under ambient conditions. United States. doi:10.1016/j.jcat.2016.03.031.
Li, Hongfei, Pan, Cheng, Zhao, Sijia, Liu, Ping, Zhu, Yimei, and Rafailovich, Miriam H. 2016. "Enhancing performance of PEM fuel cells: Using the Au nanoplatelet/Nafion interface to enable CO oxidation under ambient conditions". United States. doi:10.1016/j.jcat.2016.03.031. https://www.osti.gov/servlets/purl/1336109.
@article{osti_1336109,
title = {Enhancing performance of PEM fuel cells: Using the Au nanoplatelet/Nafion interface to enable CO oxidation under ambient conditions},
author = {Li, Hongfei and Pan, Cheng and Zhao, Sijia and Liu, Ping and Zhu, Yimei and Rafailovich, Miriam H.},
abstractNote = {We developed a method for fabrication of Au nanoparticle platelets which can be coated onto the Nafion membranes of polymer electrolyte membrane (PEM) fuel cells simply by Langmuir–Blodgett (LB) trough lift off from the air water interface. By incorporating the coated membranes into fuel cells with one membrane electrode assembly (MEA) we enhanced the maximum power output by more than 50% when operated under ambient conditions. An enhancement of more than 200% was observed when 0.1% CO was incorporated into the H2 input gas stream and minimal enhancement was observed when the PEM fuel cell was operated with 100% O2 gas at the cathode, or when particles were deposited on the electrodes. Density function theory (DFT) calculations were carried out to understand the origin of improved output power. Au NPs with 3-atomic layer in height and 2 nm in size were constructed to model the experimentally synthesized Au NPs. Our results indicated that the Au NPs interacted synergistically with the SO3 groups, attached at end of Nafion side chains, to reduce the energy barrier for the oxidation of CO occurring at the perimeter of the Au NPs, from 1.292 eV to 0.518 eV, enabling the reaction to occur at T<300 K.},
doi = {10.1016/j.jcat.2016.03.031},
journal = {Journal of Catalysis},
number = C,
volume = 339,
place = {United States},
year = {2016},
month = {4}
}