DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Molecular basis for the broad substrate selectivity of a peptide prenyltransferase

Abstract

The cyanobactin prenyltransferases catalyze a series of known or unprecedented reactions on millions of different substrates, with no easily observable recognition motif and exquisite regioselectivity. Here we define the basis of broad substrate tolerance for the otherwise uncharacterized TruF family. We determined the structures of the Tyr-prenylating enzyme PagF, in complex with an isoprenoid donor analog and a panel of linear and macrocyclic peptide substrates. Unexpectedly, the structures reveal a truncated barrel fold, wherein binding of large peptide substrates is necessary to complete a solvent-exposed hydrophobic pocket to form the catalytically competent active site. Kinetic, mutational, chemical, and computational analyses revealed the structural basis of selectivity, showing a small motif within peptide substrates that is sufficient for recognition by the enzyme. Attaching this 2-residue motif to two random peptides results in their isoprenylation by PagF, demonstrating utility as a general biocatalytic platform for modifications on any peptide substrate.

Authors:
 [1];  [2];  [2];  [2];  [2];  [1];  [2];  [2];  [1]
  1. Univ. of Illinois at Urbana-Champaign, Urbana, IL (United States)
  2. Univ. of Utah, Salt Lake City, UT (United States)
Publication Date:
Research Org.:
Argonne National Laboratory (ANL), Argonne, IL (United States)
Sponsoring Org.:
National Institutes of Health (NIH)
OSTI Identifier:
1335987
Grant/Contract Number:  
GM102602; GM103219
Resource Type:
Accepted Manuscript
Journal Name:
Proceedings of the National Academy of Sciences of the United States of America
Additional Journal Information:
Journal Volume: 113; Journal Issue: 49; Journal ID: ISSN 0027-8424
Publisher:
National Academy of Sciences
Country of Publication:
United States
Language:
ENGLISH
Subject:
59 BASIC BIOLOGICAL SCIENCES; RiPP; biosynthesis; prenylation; crystallography

Citation Formats

Hao, Yue, Pierce, Elizabeth, Roe, Daniel, Morita, Maho, McIntosh, John A., Agarwal, Vinayak, Cheatham, III, Thomas E., Schmidt, Eric W., and Nair, Satish K. Molecular basis for the broad substrate selectivity of a peptide prenyltransferase. United States: N. p., 2016. Web. doi:10.1073/pnas.1609869113.
Hao, Yue, Pierce, Elizabeth, Roe, Daniel, Morita, Maho, McIntosh, John A., Agarwal, Vinayak, Cheatham, III, Thomas E., Schmidt, Eric W., & Nair, Satish K. Molecular basis for the broad substrate selectivity of a peptide prenyltransferase. United States. https://doi.org/10.1073/pnas.1609869113
Hao, Yue, Pierce, Elizabeth, Roe, Daniel, Morita, Maho, McIntosh, John A., Agarwal, Vinayak, Cheatham, III, Thomas E., Schmidt, Eric W., and Nair, Satish K. Mon . "Molecular basis for the broad substrate selectivity of a peptide prenyltransferase". United States. https://doi.org/10.1073/pnas.1609869113. https://www.osti.gov/servlets/purl/1335987.
@article{osti_1335987,
title = {Molecular basis for the broad substrate selectivity of a peptide prenyltransferase},
author = {Hao, Yue and Pierce, Elizabeth and Roe, Daniel and Morita, Maho and McIntosh, John A. and Agarwal, Vinayak and Cheatham, III, Thomas E. and Schmidt, Eric W. and Nair, Satish K.},
abstractNote = {The cyanobactin prenyltransferases catalyze a series of known or unprecedented reactions on millions of different substrates, with no easily observable recognition motif and exquisite regioselectivity. Here we define the basis of broad substrate tolerance for the otherwise uncharacterized TruF family. We determined the structures of the Tyr-prenylating enzyme PagF, in complex with an isoprenoid donor analog and a panel of linear and macrocyclic peptide substrates. Unexpectedly, the structures reveal a truncated barrel fold, wherein binding of large peptide substrates is necessary to complete a solvent-exposed hydrophobic pocket to form the catalytically competent active site. Kinetic, mutational, chemical, and computational analyses revealed the structural basis of selectivity, showing a small motif within peptide substrates that is sufficient for recognition by the enzyme. Attaching this 2-residue motif to two random peptides results in their isoprenylation by PagF, demonstrating utility as a general biocatalytic platform for modifications on any peptide substrate.},
doi = {10.1073/pnas.1609869113},
journal = {Proceedings of the National Academy of Sciences of the United States of America},
number = 49,
volume = 113,
place = {United States},
year = {Mon Nov 21 00:00:00 EST 2016},
month = {Mon Nov 21 00:00:00 EST 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 37 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

The chemical toolbox for monitoring protein fatty acylation and prenylation
journal, June 2010

  • Hannoush, Rami N.; Sun, JingLucy
  • Nature Chemical Biology, Vol. 6, Issue 7
  • DOI: 10.1038/nchembio.388

Natural combinatorial peptide libraries in cyanobacterial symbionts of marine ascidians
journal, November 2006

  • Donia, Mohamed S.; Hathaway, Brian J.; Sudek, Sebastian
  • Nature Chemical Biology, Vol. 2, Issue 12
  • DOI: 10.1038/nchembio829

Structural basis for the promiscuous biosynthetic prenylation of aromatic natural products
journal, June 2005

  • Kuzuyama, Tomohisa; Noel, Joseph P.; Richard, Stéphane B.
  • Nature, Vol. 435, Issue 7044
  • DOI: 10.1038/nature03668

Enzyme Function Initiative-Enzyme Similarity Tool (EFI-EST): A web tool for generating protein sequence similarity networks
journal, August 2015

  • Gerlt, John A.; Bouvier, Jason T.; Davidson, Daniel B.
  • Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, Vol. 1854, Issue 8
  • DOI: 10.1016/j.bbapap.2015.04.015

Assessing the Combinatorial Potential of the RiPP Cyanobactin tru Pathway
journal, July 2014

  • Ruffner, Duane E.; Schmidt, Eric W.; Heemstra, John R.
  • ACS Synthetic Biology, Vol. 4, Issue 4
  • DOI: 10.1021/sb500267d

Protein Prenylation: Molecular Mechanisms and Functional Consequences
journal, June 1996


Catalytic Mechanism of Aromatic Prenylation by NphB
journal, March 2012

  • Yang, Yue; Miao, Yipu; Wang, Bing
  • Biochemistry, Vol. 51, Issue 12
  • DOI: 10.1021/bi201800m

Metabolic model for diversity-generating biosynthesis
journal, February 2016

  • Tianero, Ma. Diarey; Pierce, Elizabeth; Raghuraman, Shrinivasan
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 7
  • DOI: 10.1073/pnas.1525438113

Structure of PatF from Prochloron didemni
journal, May 2013

  • Bent, Andrew F.; Koehnke, Jesko; Houssen, Wael E.
  • Acta Crystallographica Section F Structural Biology and Crystallization Communications, Vol. 69, Issue 6
  • DOI: 10.1107/S1744309113012931

Circular Logic: Nonribosomal Peptide-like Macrocyclization with a Ribosomal Peptide Catalyst
journal, November 2010

  • McIntosh, John A.; Robertson, Charles R.; Agarwal, Vinayak
  • Journal of the American Chemical Society, Vol. 132, Issue 44
  • DOI: 10.1021/ja1067806

Identification of Significant Residues in the Substrate Binding Site of Bacillus stearothermophilus Farnesyl Diphosphate Synthase
journal, January 1996

  • Koyama, Tanetoshi; Tajima, Masaya; Sano, Hiroaki
  • Biochemistry, Vol. 35, Issue 29
  • DOI: 10.1021/bi960137v

Enzymatic Basis of Ribosomal Peptide Prenylation in Cyanobacteria
journal, August 2011

  • McIntosh, John A.; Donia, Mohamed S.; Nair, Satish K.
  • Journal of the American Chemical Society, Vol. 133, Issue 34
  • DOI: 10.1021/ja205458h

Cyanobactins—ribosomal cyclic peptides produced by cyanobacteria
journal, February 2010

  • Sivonen, Kaarina; Leikoski, Niina; Fewer, David P.
  • Applied Microbiology and Biotechnology, Vol. 86, Issue 5
  • DOI: 10.1007/s00253-010-2482-x

The ABBA family of aromatic prenyltransferases: broadening natural product diversity
journal, February 2008


Post-Translational Isoprenylation of Tryptophan
journal, August 2011

  • Okada, Masahiro
  • Bioscience, Biotechnology, and Biochemistry, Vol. 75, Issue 8
  • DOI: 10.1271/bbb.110087

Chapter 23 Cyanobactin Ribosomally Synthesized Peptides—A Case of Deep Metagenome Mining
book, January 2009

  • Schmidt, Eric W.; Donia, Mohamed S.
  • Complex Enzymes in Microbial Natural Product Biosynthesis, Part A: Overview Articles and Peptides
  • DOI: 10.1016/S0076-6879(09)04823-X

Prenyl transfer to aromatic substrates: genetics and enzymology
journal, April 2009


Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks
journal, November 2003


Patellamide A and C biosynthesis by a microcin-like pathway in Prochloron didemni, the cyanobacterial symbiont of Lissoclinum patella
journal, May 2005

  • Schmidt, E. W.; Nelson, J. T.; Rasko, D. A.
  • Proceedings of the National Academy of Sciences, Vol. 102, Issue 20
  • DOI: 10.1073/pnas.0501424102

Highly Diverse Cyanobactins in Strains of the Genus Anabaena
journal, December 2009

  • Leikoski, N.; Fewer, D. P.; Jokela, J.
  • Applied and Environmental Microbiology, Vol. 76, Issue 3
  • DOI: 10.1128/AEM.01061-09

Protein Prenylation: Enzymes, Therapeutics, and Biotechnology Applications
journal, November 2014

  • Palsuledesai, Charuta C.; Distefano, Mark D.
  • ACS Chemical Biology, Vol. 10, Issue 1
  • DOI: 10.1021/cb500791f

Crystal Structure of Recombinant Farnesyl Diphosphate Synthase at 2.6-.ANG. Resolution
journal, September 1994

  • Tarshis, L. C.; Yan, Mujing; Poulter, C. Dale
  • Biochemistry, Vol. 33, Issue 36
  • DOI: 10.1021/bi00202a004

The structural biology of patellamide biosynthesis
journal, December 2014

  • Koehnke, Jesko; Bent, Andrew F.; Houssen, Wael E.
  • Current Opinion in Structural Biology, Vol. 29
  • DOI: 10.1016/j.sbi.2014.10.006

Linking Chemistry and Genetics in the Growing Cyanobactin Natural Products Family
journal, April 2011


Mutagenesis Studies of Protein Farnesyltransferase Implicate Aspartate β352 as a Magnesium Ligand
journal, October 2003

  • Pickett, Jennifer S.; Bowers, Katherine E.; Fierke, Carol A.
  • Journal of Biological Chemistry, Vol. 278, Issue 51
  • DOI: 10.1074/jbc.M309226200

Regulation of peptide antibiotic production in Bacillus
journal, March 1993


Genome Mining Expands the Chemical Diversity of the Cyanobactin Family to Include Highly Modified Linear Peptides
journal, August 2013


Mechanistic studies on the indole prenyltransferases
journal, January 2015


Recent advances in protein prenyltransferases: substrate identification, regulation, and disease interventions
journal, December 2012

  • Zverina, Elaina A.; Lamphear, Corissa L.; Wright, Elia N.
  • Current Opinion in Chemical Biology, Vol. 16, Issue 5-6
  • DOI: 10.1016/j.cbpa.2012.10.015

Multifunctional Prenylated Peptides for Live Cell Analysis
journal, June 2009

  • Wollack, James W.; Zeliadt, Nicholette A.; Mullen, Daniel G.
  • Journal of the American Chemical Society, Vol. 131, Issue 21
  • DOI: 10.1021/ja805174z

The structure of dimethylallyl tryptophan synthase reveals a common architecture of aromatic prenyltransferases in fungi and bacteria
journal, August 2009

  • Metzger, U.; Schall, C.; Zocher, G.
  • Proceedings of the National Academy of Sciences, Vol. 106, Issue 34
  • DOI: 10.1073/pnas.0904897106

Structure and Mechanism of the Magnesium-Independent Aromatic Prenyltransferase CloQ from the Clorobiocin Biosynthetic Pathway
journal, December 2010

  • Metzger, Ute; Keller, Sascha; Stevenson, Clare E. M.
  • Journal of Molecular Biology, Vol. 404, Issue 4
  • DOI: 10.1016/j.jmb.2010.09.067

Using Marine Natural Products to Discover a Protease that Catalyzes Peptide Macrocyclization of Diverse Substrates
journal, February 2009

  • Lee, Jaeheon; McIntosh, John; Hathaway, Brian J.
  • Journal of the American Chemical Society, Vol. 131, Issue 6
  • DOI: 10.1021/ja8092168

A global assembly line for cyanobactins
journal, April 2008

  • Donia, Mohamed S.; Ravel, Jacques; Schmidt, Eric W.
  • Nature Chemical Biology, Vol. 4, Issue 6
  • DOI: 10.1038/nchembio.84

Acein-1, a novel angiotensin-I-converting enzyme inhibitory peptide isolated from tryptic hydrolysate of human plasma
journal, November 1998


Follow the leader: the use of leader peptides to guide natural product biosynthesis
journal, December 2009

  • Oman, Trent J.; van der Donk, Wilfred A.
  • Nature Chemical Biology, Vol. 6, Issue 1
  • DOI: 10.1038/nchembio.286

Recognition Sequences and Substrate Evolution in Cyanobactin Biosynthesis
journal, March 2014

  • Sardar, Debosmita; Pierce, Elizabeth; McIntosh, John A.
  • ACS Synthetic Biology, Vol. 4, Issue 2
  • DOI: 10.1021/sb500019b

Converting Peptides into Drug Leads by Lipidation
journal, March 2012


Works referencing / citing this record:

Molecular Insight into the Mg 2+ -Dependent Allosteric Control of Indole Prenylation by Aromatic Prenyltransferase AmbP1
journal, May 2018

  • Awakawa, Takayoshi; Mori, Takahiro; Nakashima, Yu
  • Angewandte Chemie, Vol. 130, Issue 23
  • DOI: 10.1002/ange.201800855

Molecular Insight into the Mg 2+ -Dependent Allosteric Control of Indole Prenylation by Aromatic Prenyltransferase AmbP1
journal, May 2018

  • Awakawa, Takayoshi; Mori, Takahiro; Nakashima, Yu
  • Angewandte Chemie International Edition, Vol. 57, Issue 23
  • DOI: 10.1002/anie.201800855

Parallel lives of symbionts and hosts: chemical mutualism in marine animals
journal, January 2018

  • Morita, Maho; Schmidt, Eric W.
  • Natural Product Reports, Vol. 35, Issue 4
  • DOI: 10.1039/c7np00053g