skip to main content

DOE PAGESDOE PAGES

Title: Using HT and DT gamma rays to diagnose mix in Omega capsule implosions

Experimental evidence [1] indicates that shell material can be driven into the core of Omega capsule implosions on the same time scale as the initial convergent shock. It has been hypothesized that shock-generated temperatures at the fuel/shell interface in thin exploding pusher capsules diffusively drives shell material into the gas core between the time of shock passage and bang time. Here, we propose a method to temporally resolve and observe the evolution of shell material into the capsule core as a function of fuel/shell interface temperature (which can be varied by varying the capsule shell thickness). Our proposed method uses a CD plastic capsule filled with 50/50 HT gas and diagnosed using gas Cherenkov detection (GCD) to temporally resolve both the HT "clean" and DT "mix" gamma ray burn histories. Simulations using Hydra [2] for an Omega CD-lined capsule with a sub-micron layer of the inside surface of the shell pre-mixed into a fraction of the gas region produce gamma reaction history profiles that are sensitive to the depth to which this material is mixed. Furthermore, we observe these differences as a function of capsule shell thickness is proposed to determine if interface mixing is consistent with thermal diffusion λmore » ii~T 2/Z 2ρ at the gas/shell interface. Finally, since hydrodynamic mixing from shell perturbations, such as the mounting stalk and glue, could complicate these types of capsule-averaged temporal measurements, simulations including their effects also have been performed showing minimal perturbation of the hot spot geometry.« less
Authors:
; ; ; ; ; ; ; ;
Publication Date:
Report Number(s):
LA-UR-15-28239
Journal ID: ISSN 1742-6588
Grant/Contract Number:
AC52-06NA25396
Type:
Accepted Manuscript
Journal Name:
Journal of Physics. Conference Series
Additional Journal Information:
Journal Volume: 717; Journal ID: ISSN 1742-6588
Publisher:
IOP Publishing
Research Org:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org:
USDOE
Country of Publication:
United States
Language:
English
Subject:
11 NUCLEAR FUEL CYCLE AND FUEL MATERIALS; 46 INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY; gamma rays; mix; implosions
OSTI Identifier:
1335611