skip to main content

DOE PAGESDOE PAGES

Title: Structurally Defined 3D Nanographene Assemblies via Bottom-Up Chemical Synthesis for Highly Efficient Lithium Storage

In this paper, functionalized 3D nanographenes with controlled electronic properties have been synthesized through a multistep organic synthesis method and are further used as promising anode materials for lithium-ion batteries, exhibiting a much increased capacity (up to 950 mAh g -1), three times higher than that of the graphite anode (372 mAh g -1).
Authors:
ORCiD logo [1] ;  [1] ;  [1] ;  [2] ;  [3] ;  [4] ;  [4] ;  [4] ;  [5] ;  [5] ;  [6] ;  [6] ;  [6] ;  [7] ;  [6] ;  [1]
  1. Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Physical Chemistry and Applied Spectroscopy (C-PCS) Group
  2. Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Sigma Division
  3. Univ. of Idaho, Moscow, ID (United States). Chemical and Materials Engineering
  4. Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Physics and Applications Division. Center of Integrated Nanotechnology (CINT)
  5. Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Bioscience Division
  6. Univ. at Buffalo, NY (United States). Dept. of Chemical and Biological Engineering
  7. Case Western Reserve Univ., Cleveland, OH (United States). Center of Advanced Science and Engineering for Carbon (Case 4-Carbon). Dept. of Macromolecular Science and Engineering
Publication Date:
Report Number(s):
LA-UR-15-25052; LA-UR-17-27754
Journal ID: ISSN 0935-9648
Grant/Contract Number:
AC52-06NA25396
Type:
Accepted Manuscript
Journal Name:
Advanced Materials
Additional Journal Information:
Journal Volume: 28; Journal Issue: 46; Journal ID: ISSN 0935-9648
Publisher:
Wiley
Research Org:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org:
USDOE Laboratory Directed Research and Development (LDRD) Program
Contributing Orgs:
Case Western Reserve Univ., Cleveland, OH (United States); Univ. of Idaho, Moscow, ID (United States)
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; 36 MATERIALS SCIENCE; Material Science; graphene; lithium-ion battery; bottom-up synthesis
OSTI Identifier:
1335597
Alternate Identifier(s):
OSTI ID: 1400799; OSTI ID: 1485403

Yen, Hung-Ju, Tsai, Hsinhan, Zhou, Ming, Holby, Edward F., Choudhury, Samrat, Chen, Aiping, Adamska, Lyudmyla, Tretiak, Sergei, Sanchez, Timothy, Iyer, Srinivas, Zhang, Hanguang, Zhu, Lingxiang, Lin, Haiqing, Dai, Liming, Wu, Gang, and Wang, Hsing-Lin. Structurally Defined 3D Nanographene Assemblies via Bottom-Up Chemical Synthesis for Highly Efficient Lithium Storage. United States: N. p., Web. doi:10.1002/adma.201603613.
Yen, Hung-Ju, Tsai, Hsinhan, Zhou, Ming, Holby, Edward F., Choudhury, Samrat, Chen, Aiping, Adamska, Lyudmyla, Tretiak, Sergei, Sanchez, Timothy, Iyer, Srinivas, Zhang, Hanguang, Zhu, Lingxiang, Lin, Haiqing, Dai, Liming, Wu, Gang, & Wang, Hsing-Lin. Structurally Defined 3D Nanographene Assemblies via Bottom-Up Chemical Synthesis for Highly Efficient Lithium Storage. United States. doi:10.1002/adma.201603613.
Yen, Hung-Ju, Tsai, Hsinhan, Zhou, Ming, Holby, Edward F., Choudhury, Samrat, Chen, Aiping, Adamska, Lyudmyla, Tretiak, Sergei, Sanchez, Timothy, Iyer, Srinivas, Zhang, Hanguang, Zhu, Lingxiang, Lin, Haiqing, Dai, Liming, Wu, Gang, and Wang, Hsing-Lin. 2016. "Structurally Defined 3D Nanographene Assemblies via Bottom-Up Chemical Synthesis for Highly Efficient Lithium Storage". United States. doi:10.1002/adma.201603613. https://www.osti.gov/servlets/purl/1335597.
@article{osti_1335597,
title = {Structurally Defined 3D Nanographene Assemblies via Bottom-Up Chemical Synthesis for Highly Efficient Lithium Storage},
author = {Yen, Hung-Ju and Tsai, Hsinhan and Zhou, Ming and Holby, Edward F. and Choudhury, Samrat and Chen, Aiping and Adamska, Lyudmyla and Tretiak, Sergei and Sanchez, Timothy and Iyer, Srinivas and Zhang, Hanguang and Zhu, Lingxiang and Lin, Haiqing and Dai, Liming and Wu, Gang and Wang, Hsing-Lin},
abstractNote = {In this paper, functionalized 3D nanographenes with controlled electronic properties have been synthesized through a multistep organic synthesis method and are further used as promising anode materials for lithium-ion batteries, exhibiting a much increased capacity (up to 950 mAh g-1), three times higher than that of the graphite anode (372 mAh g-1).},
doi = {10.1002/adma.201603613},
journal = {Advanced Materials},
number = 46,
volume = 28,
place = {United States},
year = {2016},
month = {10}
}

Works referenced in this record:

Nanostructured Reduced Graphene Oxide/Fe2O3 Composite As a High-Performance Anode Material for Lithium Ion Batteries
journal, April 2011
  • Zhu, Xianjun; Zhu, Yanwu; Murali, Shanthi
  • ACS Nano, Vol. 5, Issue 4, p. 3333-3338
  • DOI: 10.1021/nn200493r

A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries
journal, September 2010

High reversible capacity carbon-lithium negative electrode in polymer electrolyte
journal, April 1995

High-performance lithium-ion anodes using a hierarchical bottom-up approach
journal, March 2010
  • Magasinski, A.; Dixon, P.; Hertzberg, B.
  • Nature Materials, Vol. 9, Issue 4, p. 353-358
  • DOI: 10.1038/nmat2725

High-performance lithium battery anodes using silicon nanowires
journal, December 2007
  • Chan, Candace K.; Peng, Hailin; Liu, Gao
  • Nature Nanotechnology, Vol. 3, Issue 1, p. 31-35
  • DOI: 10.1038/nnano.2007.411

Chemical methods for the production of graphenes
journal, March 2009
  • Park, Sungjin; Ruoff, Rodney S.
  • Nature Nanotechnology, Vol. 4, Issue 4, p. 217-224
  • DOI: 10.1038/nnano.2009.58

Graphene Anchored with Co3O4 Nanoparticles as Anode of Lithium Ion Batteries with Enhanced Reversible Capacity and Cyclic Performance
journal, June 2010
  • Wu, Zhong-Shuai; Ren, Wencai; Wen, Lei
  • ACS Nano, Vol. 4, Issue 6, p. 3187-3194
  • DOI: 10.1021/nn100740x

Nanostructured materials for advanced energy conversion and storage devices
journal, May 2005
  • Aric�, Antonino Salvatore; Bruce, Peter; Scrosati, Bruno
  • Nature Materials, Vol. 4, Issue 5, p. 366-377
  • DOI: 10.1038/nmat1368

Mn3O4?Graphene Hybrid as a High-Capacity Anode Material for Lithium Ion Batteries
journal, October 2010
  • Wang, Hailiang; Cui, Li-Feng; Yang, Yuan
  • Journal of the American Chemical Society, Vol. 132, Issue 40, p. 13978-13980
  • DOI: 10.1021/ja105296a

New insights into the structure and reduction of graphite oxide
journal, July 2009
  • Gao, Wei; Alemany, Lawrence B.; Ci, Lijie
  • Nature Chemistry, Vol. 1, Issue 5, p. 403-408
  • DOI: 10.1038/nchem.281

Carbon?Silicon Core?Shell Nanowires as High Capacity Electrode for Lithium Ion Batteries
journal, September 2009
  • Cui, Li-Feng; Yang, Yuan; Hsu, Ching-Mei
  • Nano Letters, Vol. 9, Issue 9, p. 3370-3374
  • DOI: 10.1021/nl901670t

Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material
journal, April 2008
  • Eda, Goki; Fanchini, Giovanni; Chhowalla, Manish
  • Nature Nanotechnology, Vol. 3, Issue 5, p. 270-274
  • DOI: 10.1038/nnano.2008.83

Large Reversible Li Storage of Graphene Nanosheet Families for Use in Rechargeable Lithium Ion Batteries
journal, August 2008
  • Yoo, EunJoo; Kim, Jedeok; Hosono, Eiji
  • Nano Letters, Vol. 8, Issue 8, p. 2277-2282
  • DOI: 10.1021/nl800957b