DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Identification of the primary compensating defect level responsible for determining blocking voltage of vertical GaN power diodes

Abstract

Electrical performance and characterization of deep levels in vertical GaN P-i-N diodes grown on low threading dislocation density (~104 –106 cm–2) bulk GaN substrates are investigated. The lightly doped n drift region of these devices is observed to be highly compensated by several prominent deep levels detected using deep level optical spectroscopy at Ec-2.13, 2.92, and 3.2 eV. A combination of steady-state photocapacitance and lighted capacitance-voltage profiling indicates the concentrations of these deep levels to be Nt = 3 × 1012, 2 × 1015, and 5 × 1014 cm–3, respectively. The Ec-2.92 eV level is observed to be the primary compensating defect in as-grown n-type metal-organic chemical vapor deposition GaN, indicating this level acts as a limiting factor for achieving controllably low doping. The device blocking voltage should increase if compensating defects reduce the free carrier concentration of the n drift region. Understanding the incorporation of as-grown and native defects in thick n-GaN is essential for enabling large VBD in the next-generation wide-bandgap power semiconductor devices. Furthermore, controlling the as-grown defects induced by epitaxial growth conditions is critical to achieve blocking voltage capability above 5 kV.

Authors:
ORCiD logo [1]; ORCiD logo [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1]; ORCiD logo [1];  [2];  [3];  [1]
  1. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
  2. Avogy, Inc., San Jose, CA (United States); U.S. Dept. of Energy, Washington, D.C. (United States). Advanced Research Projects Agency-Energy (ARPA-E)
  3. Avogy, Inc., San Jose, CA (United States); Quora Technology, Inc., Santa Clara, CA (United States)
Publication Date:
Research Org.:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1335469
Alternate Identifier(s):
OSTI ID: 1330589
Report Number(s):
SAND-2016-3994J
Journal ID: ISSN 0003-6951; APPLAB; 638999
Grant/Contract Number:  
AC04-94AL85000
Resource Type:
Accepted Manuscript
Journal Name:
Applied Physics Letters
Additional Journal Information:
Journal Volume: 109; Journal Issue: 18; Journal ID: ISSN 0003-6951
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
30 DIRECT ENERGY CONVERSION; 75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY

Citation Formats

King, M. P., Kaplar, R. J., Dickerson, J. R., Lee, S. R., Allerman, A. A., Crawford, M. H., Fischer, A. J., Marinella, M. J., Flicker, J. D., Fleming, R. M., Kizilyalli, I. C., Aktas, O., and Armstrong, A. M. Identification of the primary compensating defect level responsible for determining blocking voltage of vertical GaN power diodes. United States: N. p., 2016. Web. doi:10.1063/1.4966903.
King, M. P., Kaplar, R. J., Dickerson, J. R., Lee, S. R., Allerman, A. A., Crawford, M. H., Fischer, A. J., Marinella, M. J., Flicker, J. D., Fleming, R. M., Kizilyalli, I. C., Aktas, O., & Armstrong, A. M. Identification of the primary compensating defect level responsible for determining blocking voltage of vertical GaN power diodes. United States. https://doi.org/10.1063/1.4966903
King, M. P., Kaplar, R. J., Dickerson, J. R., Lee, S. R., Allerman, A. A., Crawford, M. H., Fischer, A. J., Marinella, M. J., Flicker, J. D., Fleming, R. M., Kizilyalli, I. C., Aktas, O., and Armstrong, A. M. Mon . "Identification of the primary compensating defect level responsible for determining blocking voltage of vertical GaN power diodes". United States. https://doi.org/10.1063/1.4966903. https://www.osti.gov/servlets/purl/1335469.
@article{osti_1335469,
title = {Identification of the primary compensating defect level responsible for determining blocking voltage of vertical GaN power diodes},
author = {King, M. P. and Kaplar, R. J. and Dickerson, J. R. and Lee, S. R. and Allerman, A. A. and Crawford, M. H. and Fischer, A. J. and Marinella, M. J. and Flicker, J. D. and Fleming, R. M. and Kizilyalli, I. C. and Aktas, O. and Armstrong, A. M.},
abstractNote = {Electrical performance and characterization of deep levels in vertical GaN P-i-N diodes grown on low threading dislocation density (~104 –106 cm–2) bulk GaN substrates are investigated. The lightly doped n drift region of these devices is observed to be highly compensated by several prominent deep levels detected using deep level optical spectroscopy at Ec-2.13, 2.92, and 3.2 eV. A combination of steady-state photocapacitance and lighted capacitance-voltage profiling indicates the concentrations of these deep levels to be Nt = 3 × 1012, 2 × 1015, and 5 × 1014 cm–3, respectively. The Ec-2.92 eV level is observed to be the primary compensating defect in as-grown n-type metal-organic chemical vapor deposition GaN, indicating this level acts as a limiting factor for achieving controllably low doping. The device blocking voltage should increase if compensating defects reduce the free carrier concentration of the n drift region. Understanding the incorporation of as-grown and native defects in thick n-GaN is essential for enabling large VBD in the next-generation wide-bandgap power semiconductor devices. Furthermore, controlling the as-grown defects induced by epitaxial growth conditions is critical to achieve blocking voltage capability above 5 kV.},
doi = {10.1063/1.4966903},
journal = {Applied Physics Letters},
number = 18,
volume = 109,
place = {United States},
year = {Mon Oct 31 00:00:00 EDT 2016},
month = {Mon Oct 31 00:00:00 EDT 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 8 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

High Voltage Vertical GaN p-n Diodes With Avalanche Capability
journal, October 2013

  • Kizilyalli, Isik C.; Edwards, Andrew P.; Nie, Hui
  • IEEE Transactions on Electron Devices, Vol. 60, Issue 10
  • DOI: 10.1109/TED.2013.2266664

Semiconductors for high‐voltage, vertical channel field‐effect transistors
journal, March 1982

  • Baliga, B. J.
  • Journal of Applied Physics, Vol. 53, Issue 3, p. 1759-1764
  • DOI: 10.1063/1.331646

AlGaN/GaN HEMTs-an overview of device operation and applications
journal, June 2002


Optically and thermally detected deep levels in n -type Schottky and p+-n GaN diodes
journal, May 2000

  • Hierro, A.; Kwon, D.; Ringel, S. A.
  • Applied Physics Letters, Vol. 76, Issue 21
  • DOI: 10.1063/1.126580

Effects of carbon on the electrical and optical properties of InN, GaN, and AlN
journal, January 2014


Performance and Breakdown Characteristics of Irradiated Vertical Power GaN P-i-N Diodes
journal, December 2015

  • King, M. P.; Armstrong, A. M.; Dickerson, J. R.
  • IEEE Transactions on Nuclear Science, Vol. 62, Issue 6
  • DOI: 10.1109/TNS.2015.2480071

Vertical Power p-n Diodes Based on Bulk GaN
journal, February 2015

  • Kizilyalli, Isik C.; Edwards, Andrew P.; Aktas, Ozgur
  • IEEE Transactions on Electron Devices, Vol. 62, Issue 2
  • DOI: 10.1109/TED.2014.2360861

3.7 kV Vertical GaN PN Diodes
journal, February 2014

  • Kizilyalli, Isik C.; Edwards, Andrew P.; Nie, Hui
  • IEEE Electron Device Letters, Vol. 35, Issue 2
  • DOI: 10.1109/LED.2013.2294175

Large‐band‐gap SiC, III‐V nitride, and II‐VI ZnSe‐based semiconductor device technologies
journal, August 1994

  • Morkoç, H.; Strite, S.; Gao, G. B.
  • Journal of Applied Physics, Vol. 76, Issue 3
  • DOI: 10.1063/1.358463

Yellow Luminescence of Gallium Nitride Generated by Carbon Defect Complexes
journal, February 2013


Size dictated thermal conductivity of GaN
journal, September 2016

  • Beechem, Thomas E.; McDonald, Anthony E.; Fuller, Elliot J.
  • Journal of Applied Physics, Vol. 120, Issue 9
  • DOI: 10.1063/1.4962010

Comparison of 6H-SiC, 3C-SiC, and Si for power devices
journal, March 1993

  • Bhatnagar, M.; Baliga, B. J.
  • IEEE Transactions on Electron Devices, Vol. 40, Issue 3
  • DOI: 10.1109/16.199372

GaN HEMT reliability
journal, September 2009


Vertical GaN p-n Junction Diodes With High Breakdown Voltages Over 4 kV
journal, November 2015

  • Ohta, Hiroshi; Kaneda, Naoki; Horikiri, Fumimasa
  • IEEE Electron Device Letters, Vol. 36, Issue 11
  • DOI: 10.1109/LED.2015.2478907

AlGaN/GaN high-electron-mobility transistor technology for high-voltage and low-on-resistance operation
journal, June 2016

  • Kuzuhara, Masaaki; Asubar, Joel T.; Tokuda, Hirokuni
  • Japanese Journal of Applied Physics, Vol. 55, Issue 7
  • DOI: 10.7567/JJAP.55.070101

Optimum semiconductors for high-power electronics
journal, January 1989

  • Shenai, K.; Scott, R. S.; Baliga, B. J.
  • IEEE Transactions on Electron Devices, Vol. 36, Issue 9
  • DOI: 10.1109/16.34247

Extremely High-Speed Lattice-Matched InGaAs/InAlAs High Electron Mobility Transistors with 472 GHz Cutoff Frequency
journal, April 2002

  • Shinohara, Keisuke; Yamashita, Yoshimi; Endoh, Akira
  • Japanese Journal of Applied Physics, Vol. 41, Issue Part 2, No. 4B
  • DOI: 10.1143/JJAP.41.L437

Alternative electronic parts for multiphonon-broadened photoionization cross sections of deep levels in SiC
journal, June 2005

  • Pässler, Roland
  • Journal of Applied Physics, Vol. 97, Issue 11
  • DOI: 10.1063/1.1925768

Deep-level optical spectroscopy in GaAs
journal, May 1981


A method to determine deep level profiles in highly compensated, wide band gap semiconductors
journal, April 2005

  • Armstrong, A.; Arehart, A. R.; Ringel, S. A.
  • Journal of Applied Physics, Vol. 97, Issue 8
  • DOI: 10.1063/1.1862321

Slow Detrapping Transients due to Gate and Drain Bias Stress in High Breakdown Voltage AlGaN/GaN HEMTs
journal, August 2012

  • DasGupta, Sandeepan; Sun, Min; Armstrong, Andrew
  • IEEE Transactions on Electron Devices, Vol. 59, Issue 8
  • DOI: 10.1109/TED.2012.2198652

Carbon doping of GaN with CBr4 in radio-frequency plasma-assisted molecular beam epitaxy
journal, June 2004

  • Green, D. S.; Mishra, U. K.; Speck, J. S.
  • Journal of Applied Physics, Vol. 95, Issue 12
  • DOI: 10.1063/1.1755431

A hybrid density functional view of native vacancies in gallium nitride
journal, September 2013


Material science and device physics in SiC technology for high-voltage power devices
journal, March 2015


Impact of carbon on trap states in n -type GaN grown by metalorganic chemical vapor deposition
journal, January 2004

  • Armstrong, A.; Arehart, A. R.; Moran, B.
  • Applied Physics Letters, Vol. 84, Issue 3
  • DOI: 10.1063/1.1643540

SIMS investigations into the effect of growth conditions on residual impurity and silicon incorporation in GaN and AlxGa1−xN
journal, January 2000


Role of carbon in GaN
journal, December 2002

  • Seager, C. H.; Wright, A. F.; Yu, J.
  • Journal of Applied Physics, Vol. 92, Issue 11
  • DOI: 10.1063/1.1518794

Mechanisms for Electrical Degradation of GaN High-Electron Mobility Transistors
conference, December 2006


High voltage and high current density vertical GaN power diodes
journal, June 2016

  • Fischer, A. J.; Dickerson, J. R.; Armstrong, A. M.
  • Electronics Letters, Vol. 52, Issue 13
  • DOI: 10.1049/el.2016.1156

Influence of MOVPE growth conditions on carbon and silicon concentrations in GaN
journal, July 2002


Gallium nitride devices for power electronic applications
journal, June 2013


Recent progress of GaN power devices for automotive applications
journal, September 2014


Works referencing / citing this record:

Growth and Characterization of Vertical and Lateral p-n Junctions Formed by Selective-Area p-GaN MOVPE on Patterned Templates
journal, November 2018

  • Debald, Arne; Kotzea, Simon; Heuken, Michael
  • physica status solidi (a), Vol. 216, Issue 2
  • DOI: 10.1002/pssa.201800677

Barrier height modification and mechanism of carrier transport in Ni/ in situ grown Si 3 N 4 /n-GaN Schottky contacts
journal, January 2018

  • Karpov, S. Y.; Zakheim, D. A.; Lundin, W. V.
  • Semiconductor Science and Technology, Vol. 33, Issue 2
  • DOI: 10.1088/1361-6641/aaa603